- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- position_unitsUnits of position
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Units of position
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
ElectronDiffusionDoNothingBC
Boundary condition where the electron diffusion flux at the boundary is equal to the bulk electron diffusion equation
Overview
ElectronDiffusionDoNothingBC
is an outflow boundary condition where the outflow at the boundary is equal to the bulk electron diffusion equation.
The outflow is defined as
Where is the outflow normal to the boundary, is the normal vector of the boundary, is the diffusion coefficient, and is the electron density. When converting the density to logarithmic form and applying a scaling factor of the mesh, the strong form for ElectronDiffusionDoNothingBC
is defined as
Where is the molar density of the species in logarithmic form and is the scaling factor of the mesh.
The ElectronDiffusionDoNothingBC does not have a formalized test, yet. For this reason, users should be aware of unforeseen bugs when using ElectronDiffusionDoNothingBC. To report a bug or discuss future contributions to Zapdos, please refer to the Zapdos GitHub Discussions page. For standards of how to contribute to Zapdos and the MOOSE framework, please refer to the MOOSE Contributing page.
Example Input File Syntax
[BCs]
[electron_gap_diffusion]
type = ElectronDiffusionDoNothingBC
variable = electrons
position_units = 1.0
boundary = 'gap'
[]
[]
Input Parameters
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacements
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- skip_execution_outside_variable_domainFalseWhether to skip execution of this boundary condition when the variable it applies to is not defined on the boundary. This can facilitate setups with moving variable domains and fixed boundaries. Note that the FEProblem boundary-restricted integrity checks will also need to be turned off if using this option
Default:False
C++ Type:bool
Controllable:No
Description:Whether to skip execution of this boundary condition when the variable it applies to is not defined on the boundary. This can facilitate setups with moving variable domains and fixed boundaries. Note that the FEProblem boundary-restricted integrity checks will also need to be turned off if using this option
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.