- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- position_unitsUnits of position.
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Units of position.
- potentialThe electric potential
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The electric potential
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
LymberopoulosIonBC
Simpified kinetic ion boundary condition (Based on Lymberopoulos and Economou (1993))
Overview
LymberopoulosIonBC
is a thermal outflow boundary condition with the addition of ion induced secondary electron energy.
The outflow is defined as
Where is the flux of ions normal to the boundary, is the normal vector of the boundary, is the ion density, is the ion mobility coefficient, and is the electric potential. When converting the density to log form and applying a scaling factor of the mesh, the strong form for LymberopoulosIonBC
is defined as
Where is the molar density of the species in log form and is the scaling factor of the mesh.
Example Input File Syntax
[BCs]
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[]
(test/tests/DriftDiffusionAction/RF_Plasma_actions.i)Input Parameters
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacements
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (test/tests/accelerations/Acceleration_By_Averaging_main.i)
- (test/tests/accelerations/Acceleration_By_Shooting_Method.i)
- (test/tests/Lymberopoulos_rf_discharge/Lymberopoulos_with_argon_metastables.i)
- (test/tests/DriftDiffusionAction/RF_Plasma_no_actions.i)
- (test/tests/accelerations/Acceleration_By_Shooting_Method_SensitivityMatrix.i)
- (test/tests/crane_action/rate_units.i)
- (test/tests/DriftDiffusionAction/RF_Plasma_actions.i)
- (tutorial/tutorial06-Building-InputFile/RF_Plasma_Blank.i)
- (test/tests/Conference_Syntax_Tests/Lymberopoulos_with_argon_metastables.i)
- (tutorial/tutorial06-Building-InputFile/RF_Plasma_WithOut_Metastables.i)
- (test/tests/accelerations/Acceleration_By_Averaging_acceleration_sub.i)
References
- Dimitris P. Lymberopoulos and Demetre J. Economou.
Fluid simulations of glow discharges: effect of metastable atoms in argon.
Journal of Applied Physics, 73(8):3668–3679, 04 1993.
doi:10.1063/1.352926.[BibTeX]
@article{Lymberopoulos1993, author = "Lymberopoulos, Dimitris P. and Economou, Demetre J.", title = "Fluid simulations of glow discharges: Effect of metastable atoms in argon", journal = "Journal of Applied Physics", volume = "73", number = "8", pages = "3668-3679", year = "1993", month = "04", issn = "0021-8979", doi = "10.1063/1.352926" }
(test/tests/DriftDiffusionAction/RF_Plasma_actions.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Lymberopoulos.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
[]
#Action the supplies the drift-diffusion equations
#This action also adds JouleHeating and the ChargeSourceMoles_KV Kernels
[DriftDiffusionAction]
[Plasma]
electrons = em
charged_particle = Ar+
Neutrals = Ar*
mean_energy = mean_en
potential = potential
Is_potential_unique = true
using_offset = false
position_units = ${dom0Scale}
Additional_Outputs = 'ElectronTemperature Current EField'
[]
[]
#The Kernels supply the sources terms
[Kernels]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
[]
[AuxVariables]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[emRate]
order = CONSTANT
family = MONOMIAL
[]
[exRate]
order = CONSTANT
family = MONOMIAL
[]
[swRate]
order = CONSTANT
family = MONOMIAL
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
[]
[quRate]
order = CONSTANT
family = MONOMIAL
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#New Boundary conditions for electons, same as in paper
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
#emission_coeffs = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
#emission_coeffs = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_right_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'right'
value = 100
[]
[Ar*_physical_left_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'left'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = '0.100 * (25.4e-3 - x)'
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log(3./2.) + log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_0]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
reaction = 'em + Ar* -> em + Ar'
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
reaction = 'em + Ar* -> em + em + Ar+'
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 3e-7
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
dtmin = 1e-14
l_max_its = 20
scheme = bdf2
dt = 1e-9
[]
[Outputs]
file_base = 'RF_out'
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/accelerations/Acceleration_By_Averaging_main.i)
#This test runs the simulation for 10 rf cycle, then accelerates
#once and stops at 11 rf cycles
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Lymberopoulos_paper.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[]
[Kernels]
#Electron Equations
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
mean_energy = mean_en
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
mean_energy = mean_en
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
mean_energy = mean_en
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
mean_energy = mean_en
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Electron Energy Equations
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
[]
[AuxVariables]
[Te]
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Ar]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[Te]
type = ElectronTemperature
variable = Te
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[em_lin]
type = DensityMoles
variable = em_lin
density_log = em
[]
[Ar+_lin]
type = DensityMoles
variable = Ar+_lin
density_log = Ar+
[]
[Ar*_lin]
type = DensityMoles
variable = Ar*_lin
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[Efield_calc]
type = Efield
component = 0
potential = potential
variable = Efield
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Ar]
type = ADCurrent
potential = potential
density_log = Ar+
variable = Current_Ar
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#Boundary conditions for electons
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
#gamma = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
#gamma = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#Boundary conditions for ions
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#New Boundary conditions for metastables
[Ar*_physical_right_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'right'
value = 1e-5
[]
[Ar*_physical_left_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'left'
value = 1e-5
[]
#Boundary conditions for electron mean energy
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*pi*13.56e6*t)'
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e14)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log((3./2.) * ((1e14)/6.022e23))'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_0]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar -> em + Ar*.txt'
reaction = 'em + Ar -> em + Ar*'
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar -> em + em + Ar+.txt'
reaction = 'em + Ar -> em + em + Ar+'
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar* -> em + Ar.txt'
reaction = 'em + Ar* -> em + Ar'
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar* -> em + em + Ar+.txt'
reaction = 'em + Ar* -> em + em + Ar+'
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-43
reaction_rate_value = 39890.9324
[]
[]
[MultiApps]
#MultiApp of Acceleration by Averaging
[Averaging_Acceleration]
type = FullSolveMultiApp
input_files = 'Acceleration_By_Averaging_acceleration.i'
execute_on = 'TIMESTEP_END'
enable = false
[]
[]
[Transfers]
#MultiApp Transfers for Acceleration by Averaging
[em_to_Averaging]
type = MultiAppCopyTransfer
to_multi_app = Averaging_Acceleration
source_variable = em
variable = em
enable = false
[]
[Ar+_to_Averaging]
type = MultiAppCopyTransfer
to_multi_app = Averaging_Acceleration
source_variable = Ar+
variable = Ar+
enable = false
[]
[mean_en_to_Averaging]
type = MultiAppCopyTransfer
to_multi_app = Averaging_Acceleration
source_variable = mean_en
variable = mean_en
enable = false
[]
[potential_to_Averaging]
type = MultiAppCopyTransfer
to_multi_app = Averaging_Acceleration
source_variable = potential
variable = potential
enable = false
[]
[Ar*_to_Averaging]
type = MultiAppCopyTransfer
to_multi_app = Averaging_Acceleration
source_variable = Ar*
variable = Ar*
enable = false
[]
[Ar*S_to_Averaging]
type = MultiAppCopyTransfer
to_multi_app = Averaging_Acceleration
source_variable = Ar*
variable = Ar*S
enable = false
[]
[Ar*New_from_Averaging]
type = MultiAppCopyTransfer
from_multi_app = Averaging_Acceleration
source_variable = Ar*
variable = Ar*
enable = false
[]
[]
#The Action the add the TimePeriod Controls to turn off and on the MultiApps
[PeriodicControllers]
[Averaging_Acceleration]
Enable_at_cycle_start = 'MultiApps::Averaging_Acceleration
Transfers::em_to_Averaging *::Ar+_to_Averaging *::mean_en_to_Averaging
*::potential_to_Averaging *::Ar*_to_Averaging *::Ar*S_to_Averaging
Transfers::Ar*New_from_Averaging'
starting_cycle = 10
cycle_frequency = 13.56e6
cycles_between_controls = 10
num_controller_set = 15
name = Averaging_Acceleration
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 8.2e-7
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
dtmin = 1e-14
l_max_its = 20
scheme = bdf2
dt = 1e-9
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/accelerations/Acceleration_By_Shooting_Method.i)
#This test starts the simulation at 50 rf cycle, then accelerates
#at the 55 rf cycle mark and stops at 57 rf cycles
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
file = 'Acceleration_By_Shooting_Method_Initial_Conditions.e'
[]
[Problem]
type = FEProblem
[]
[Variables]
[em]
initial_from_file_var = em
[]
[Ar+]
initial_from_file_var = Ar+
[]
[Ar*]
initial_from_file_var = Ar*
[]
[mean_en]
initial_from_file_var = mean_en
[]
[potential]
initial_from_file_var = potential
[]
[]
[Kernels]
#Electron Equations
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
mean_energy = mean_en
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
mean_energy = mean_en
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
mean_energy = mean_en
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
mean_energy = mean_en
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Electron Energy Equations
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
[]
[AuxVariables]
[Te]
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Ar]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[Te]
type = ElectronTemperature
variable = Te
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[em_lin]
type = DensityMoles
variable = em_lin
density_log = em
[]
[Ar+_lin]
type = DensityMoles
variable = Ar+_lin
density_log = Ar+
[]
[Ar*_lin]
type = DensityMoles
variable = Ar*_lin
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[Efield_calc]
type = Efield
component = 0
potential = potential
variable = Efield
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Ar]
type = ADCurrent
potential = potential
density_log = Ar+
variable = Current_Ar
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#Boundary conditions for electons
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
#gamma = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
#gamma = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#Boundary conditions for ions
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#New Boundary conditions for metastables
[Ar*_physical_right_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'right'
value = 1e-5
[]
[Ar*_physical_left_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'left'
value = 1e-5
[]
#Boundary conditions for electron mean energy
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*pi*13.56e6*t)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_0]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar -> em + Ar*.txt'
reaction = 'em + Ar -> em + Ar*'
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar -> em + em + Ar+.txt'
reaction = 'em + Ar -> em + em + Ar+'
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar* -> em + Ar.txt'
reaction = 'em + Ar* -> em + Ar'
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar* -> em + em + Ar+.txt'
reaction = 'em + Ar* -> em + em + Ar+'
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-43
reaction_rate_value = 39890.9324
[]
[]
[MultiApps]
#MultiApp of Acceleration by Shooting Method
[Shooting]
type = FullSolveMultiApp
input_files = 'Acceleration_By_Shooting_Method_Shooting.i'
execute_on = 'TIMESTEP_END'
enable = false
[]
[]
[Transfers]
#MultiApp Transfers for Acceleration by Shooting Method
[em_to_Shooting]
type = MultiAppCopyTransfer
to_multi_app = Shooting
source_variable = em
variable = em
enable = false
[]
[Ar+_to_Shooting]
type = MultiAppCopyTransfer
to_multi_app = Shooting
source_variable = Ar+
variable = Ar+
enable = false
[]
[mean_en_to_Shooting]
type = MultiAppCopyTransfer
to_multi_app = Shooting
source_variable = mean_en
variable = mean_en
enable = false
[]
[potential_to_Shooting]
type = MultiAppCopyTransfer
to_multi_app = Shooting
source_variable = potential
variable = potential
enable = false
[]
[Ar*_to_Shooting]
type = MultiAppCopyTransfer
to_multi_app = Shooting
source_variable = Ar*
variable = Ar*
enable = false
[]
[Ar*S_to_Shooting]
type = MultiAppCopyTransfer
to_multi_app = Shooting
source_variable = Ar*
variable = Ar*S
enable = false
[]
[Ar*New_from_Shooting]
type = MultiAppCopyTransfer
from_multi_app = Shooting
source_variable = Ar*
variable = Ar*
enable = false
[]
[]
#The Action the add the TimePeriod Controls to turn off and on the MultiApps
[PeriodicControllers]
[Shooting]
Enable_at_cycle_start = 'MultiApps::Shooting
Transfers::em_to_Shooting *::Ar+_to_Shooting *::mean_en_to_Shooting
*::potential_to_Shooting *::Ar*_to_Shooting *::Ar*S_to_Shooting
Transfers::Ar*New_from_Shooting'
starting_cycle = 55
cycle_frequency = 13.56e6
cycles_between_controls = 30
num_controller_set = 2000
name = Shooting
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
start_time = 3.68731563e-6
end_time = 4.20353982e-6
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
dtmin = 1e-14
l_max_its = 20
scheme = bdf2
dt = 1e-9
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/Lymberopoulos_rf_discharge/Lymberopoulos_with_argon_metastables.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Lymberopoulos.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[]
[Kernels]
#Electron Equations (Same as in paper)
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations (Same as in paper)
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations (Same as in paper)
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations (Same as in paper)
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Since the paper uses electron temperature as a variable, the energy equation is in
#a different form but should be the same physics
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
[]
[AuxVariables]
#[emDeBug]
#[]
#[Ar+_DeBug]
#[]
#[Ar*_DeBug]
#[]
#[mean_enDeBug]
#[]
[Te]
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Ar]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
#[emDeBug]
# type = DebugResidualAux
# variable = emDeBug
# debug_variable = em
# #execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
#[]
#[Ar+_DeBug]
# type = DebugResidualAux
# variable = Ar+_DeBug
# debug_variable = Ar+
# #execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
#[]
#[mean_enDeBug]
# type = DebugResidualAux
# variable = mean_enDeBug
# debug_variable = mean_en
# #execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
#[]
#[Ar*_DeBug]
# type = DebugResidualAux
# variable = Ar*_DeBug
# debug_variable = Ar*
# #execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
#[]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[Te]
type = ElectronTemperature
variable = Te
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[em_lin]
type = DensityMoles
variable = em_lin
density_log = em
[]
[Ar+_lin]
type = DensityMoles
variable = Ar+_lin
density_log = Ar+
[]
[Ar*_lin]
type = DensityMoles
variable = Ar*_lin
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[Efield_calc]
type = Efield
component = 0
potential = potential
variable = Efield
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Ar]
type = ADCurrent
potential = potential
density_log = Ar+
variable = Current_Ar
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#New Boundary conditions for electons, same as in paper
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
#gamma = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
#gamma = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_right_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'right'
value = 100
[]
[Ar*_physical_left_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'left'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = '0.100 * (25.4e-3 - x)'
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log(3./2.) + log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_0]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
reaction = 'em + Ar* -> em + Ar'
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
reaction = 'em + Ar* -> em + em + Ar+'
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
#end_time = 0.00737463126
end_time = 3e-7
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
nl_rel_tol = 1e-08
#nl_abs_tol = 7.6e-5 #Commit out do to test falure on Mac
dtmin = 1e-14
l_max_its = 20
#Time steps based on the inverse of the plasma frequency
[TimeSteppers]
[Postprocessor]
type = PostprocessorDT
postprocessor = InversePlasmaFreq
[]
[]
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/DriftDiffusionAction/RF_Plasma_no_actions.i)
#This is the input file that supplied the gold output file.
#It is the same as the input file in
#tests/Lymberopoulos_rf_discharge/Lymberopoulos_with_argon_metastables.i,
#execpt some of the Aux Variables are renamed for the Action test
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Lymberopoulos.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[]
[Kernels]
#Electron Equations (Same as in paper)
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations (Same as in paper)
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations (Same as in paper)
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations (Same as in paper)
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Since the paper uses electron temperature as a variable, the energy equation is in
#a different form but should be the same physics
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
[]
[AuxVariables]
[e_temp]
order = CONSTANT
family = MONOMIAL
[]
[position]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[em_density]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_density]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_density]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[EFieldx]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
[]
[Current_Ar+]
order = CONSTANT
family = MONOMIAL
[]
[emRate]
order = CONSTANT
family = MONOMIAL
[]
[exRate]
order = CONSTANT
family = MONOMIAL
[]
[swRate]
order = CONSTANT
family = MONOMIAL
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
[]
[quRate]
order = CONSTANT
family = MONOMIAL
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = position
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[em_density]
type = DensityMoles
variable = em_density
density_log = em
[]
[Ar+_density]
type = DensityMoles
variable = Ar+_density
density_log = Ar+
[]
[Ar*_density]
type = DensityMoles
variable = Ar*_density
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[Efield_calc]
type = Efield
component = 0
potential = potential
variable = EFieldx
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
position_units = ${dom0Scale}
[]
[Current_Ar+]
type = ADCurrent
potential = potential
density_log = Ar+
variable = Current_Ar+
art_diff = false
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
[]
#New Boundary conditions for electons, same as in paper
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
#emission_coeffs = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
#emission_coeffs = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_right_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'right'
value = 100
[]
[Ar*_physical_left_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'left'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = '0.100 * (25.4e-3 - x)'
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log(3./2.) + log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_0]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
reaction = 'em + Ar* -> em + Ar'
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
reaction = 'em + Ar* -> em + em + Ar+'
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 3e-7
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
dtmin = 1e-14
l_max_its = 20
scheme = bdf2
dt = 1e-9
[]
[Outputs]
file_base = 'RF_out'
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/accelerations/Acceleration_By_Shooting_Method_SensitivityMatrix.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Lymberopoulos_paper.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[SMDeriv]
[]
[]
[Kernels]
#Electron Equations (Same as in paper)
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = ADEEDFReactionLog
variable = em
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = ADEEDFReactionLog
variable = em
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ADReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations (Same as in paper)
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = ADEEDFReactionLog
variable = Ar+
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = ADEEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ADReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations (Same as in paper)
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = ADEEDFReactionLog
variable = Ar*
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = ADEEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = ADEEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = ADEEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ADReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ADReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ADReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations (Same as in paper)
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Since the paper uses electron temperature as a variable, the energy equation is in
#a different form but should be the same physics
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = ADEEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = ADEEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = ADEEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = ADEEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
#Argon Excited Equations For Shooting Method
#Time Derivative term of excited Argon
[SM_Ar*_time_deriv]
type = TimeDerivative
variable = SMDeriv
[]
#Diffusion term of excited Argon
[SM_Ar*_diffusion]
type = CoeffDiffusionForShootMethod
variable = SMDeriv
density = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon loss from step-wise ionization
[SM_Ar*_stepwise_ionization]
type = EEDFReactionLogForShootMethod
variable = SMDeriv
density = Ar*
electron = em
energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[SM_Ar*_collisions]
type = EEDFReactionLogForShootMethod
variable = SMDeriv
density = Ar*
electron = em
energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[SM_Ar*_quenching]
type = ReactionSecondOrderLogForShootMethod
variable = SMDeriv
density = Ar*
v = em
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[SM_Ar*_pooling]
type = ReactionSecondOrderLogForShootMethod
variable = SMDeriv
density = Ar*
v = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
[]
#Net excited Argon loss from two-body quenching
[SM_Ar*_2B_quenching]
type = ReactionSecondOrderLogForShootMethod
variable = SMDeriv
density = Ar*
v = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
[]
#Net excited Argon loss from three-body quenching
[SM_Ar*_3B_quenching]
type = ReactionThirdOrderLogForShootMethod
variable = SMDeriv
density = Ar*
v = Ar
w = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
[]
[]
[AuxVariables]
[emDeBug]
[]
[Ar+_DeBug]
[]
[Ar*_DeBug]
[]
[mean_enDeBug]
[]
[Te]
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Ar]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[emDeBug]
type = DebugResidualAux
variable = emDeBug
debug_variable = em
#execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
[]
[Ar+_DeBug]
type = DebugResidualAux
variable = Ar+_DeBug
debug_variable = Ar+
#execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
[]
[mean_enDeBug]
type = DebugResidualAux
variable = mean_enDeBug
debug_variable = mean_en
#execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
[]
[Ar*_DeBug]
type = DebugResidualAux
variable = Ar*_DeBug
debug_variable = Ar*
#execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
[]
[emRate]
type = ADProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ADProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ADProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ADProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ADProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ADProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ADProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ADProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[Te]
type = ElectronTemperature
variable = Te
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[em_lin]
type = DensityMoles
variable = em_lin
density_log = em
[]
[Ar+_lin]
type = DensityMoles
variable = Ar+_lin
density_log = Ar+
[]
[Ar*_lin]
type = DensityMoles
variable = Ar*_lin
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[Efield_calc]
type = Efield
component = 0
potential = potential
variable = Efield
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Ar]
type = ADCurrent
potential = potential
density_log = Ar+
variable = Current_Ar
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#New Boundary conditions for electons, same as in paper
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
#gamma = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
#gamma = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_right_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'right'
value = 1e-5
[]
[Ar*_physical_left_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'left'
value = 1e-5
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*pi*13.56e6*t)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_0]
type = ADZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar -> em + Ar*.txt'
reaction = 'em + Ar -> em + Ar*'
electrons = em
[]
[reaction_1]
type = ADZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar -> em + em + Ar+.txt'
reaction = 'em + Ar -> em + em + Ar+'
electrons = em
[]
[reaction_2]
type = ADZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar* -> em + Ar.txt'
reaction = 'em + Ar* -> em + Ar'
electrons = em
[]
[reaction_3]
type = ADZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar* -> em + em + Ar+.txt'
reaction = 'em + Ar* -> em + em + Ar+'
electrons = em
[]
[reaction_4]
type = ADGenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = ADGenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = ADGenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = ADGenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-43
reaction_rate_value = 39890.9324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 73.74631268e-9
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
nl_rel_tol = 1e-08
#nl_abs_tol = 7.6e-5 #Commit out do to test falure on Mac
dtmin = 1e-14
l_max_its = 20
scheme = bdf2
dt = 1e-9
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/crane_action/rate_units.i)
# THIS FILE IS BASED ON Lymberopoulos_with_argon_metastables.i
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[geo]
type = FileMeshGenerator
file = 'rate_units.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = geo
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[]
[Kernels]
#Electron Equations (Same as in paper)
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Argon Ion Equations (Same as in paper)
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Voltage Equations (Same as in paper)
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Since the paper uses electron temperature as a variable, the energy equation is in
#a different form but should be the same physics
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
[]
[AuxVariables]
[Te]
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Ar]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[Te]
type = ElectronTemperature
variable = Te
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[em_lin]
type = DensityMoles
variable = em_lin
density_log = em
[]
[Ar+_lin]
type = DensityMoles
variable = Ar+_lin
density_log = Ar+
[]
[Ar*_lin]
type = DensityMoles
variable = Ar*_lin
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[Efield_calc]
type = Efield
component = 0
potential = potential
variable = Efield
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Ar]
type = ADCurrent
potential = potential
density_log = Ar+
variable = Current_Ar
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#New Boundary conditions for electons, same as in paper
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
#emission_coeffs = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
#emission_coeffs = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_right_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'right'
value = 100
[]
[Ar*_physical_left_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'left'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = '0.100 * (25.4e-3 - x)'
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log(3./2.) + log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = rate_coefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
#end_time = 0.00737463126
end_time = 3e-7
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
nl_rel_tol = 1e-08
#nl_abs_tol = 7.6e-5 #Commit out do to test falure on Mac
dtmin = 1e-14
l_max_its = 20
#Time steps based on the inverse of the plasma frequency
[TimeSteppers]
[Postprocessor]
type = PostprocessorDT
postprocessor = InversePlasmaFreq
[]
[]
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
execute_on = 'final'
[]
[]
[Reactions]
[Argon]
species = 'Ar* em Ar+'
aux_species = 'Ar'
reaction_coefficient_format = 'rate'
gas_species = 'Ar'
electron_energy = 'mean_en'
electron_density = 'em'
include_electrons = true
file_location = 'rate_coefficients'
potential = 'potential'
use_log = true
position_units = ${dom0Scale}
block = 0
reactions = 'em + Ar -> em + Ar* : EEDF [-11.56] (reaction1)
em + Ar -> em + em + Ar+ : EEDF [-15.7] (reaction2)
em + Ar* -> em + Ar : EEDF [11.56] (reaction3)
em + Ar* -> em + em + Ar+ : EEDF [-4.14] (reaction4)
em + Ar* -> em + Ar_r : 1.2044e11
Ar* + Ar* -> Ar+ + Ar + em : 373364000
Ar* + Ar -> Ar + Ar : 1806.6
Ar* + Ar + Ar -> Ar_2 + Ar : 398909.324'
[]
[]
(test/tests/DriftDiffusionAction/RF_Plasma_actions.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Lymberopoulos.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
[]
#Action the supplies the drift-diffusion equations
#This action also adds JouleHeating and the ChargeSourceMoles_KV Kernels
[DriftDiffusionAction]
[Plasma]
electrons = em
charged_particle = Ar+
Neutrals = Ar*
mean_energy = mean_en
potential = potential
Is_potential_unique = true
using_offset = false
position_units = ${dom0Scale}
Additional_Outputs = 'ElectronTemperature Current EField'
[]
[]
#The Kernels supply the sources terms
[Kernels]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
[]
[AuxVariables]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[emRate]
order = CONSTANT
family = MONOMIAL
[]
[exRate]
order = CONSTANT
family = MONOMIAL
[]
[swRate]
order = CONSTANT
family = MONOMIAL
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
[]
[quRate]
order = CONSTANT
family = MONOMIAL
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
[]
[]
[AuxKernels]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#New Boundary conditions for electons, same as in paper
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
#emission_coeffs = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
#emission_coeffs = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_right_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'right'
value = 100
[]
[Ar*_physical_left_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'left'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = '0.100 * (25.4e-3 - x)'
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log(3./2.) + log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_0]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
reaction = 'em + Ar* -> em + Ar'
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
reaction = 'em + Ar* -> em + em + Ar+'
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 3e-7
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
dtmin = 1e-14
l_max_its = 20
scheme = bdf2
dt = 1e-9
[]
[Outputs]
file_base = 'RF_out'
perf_graph = true
[out]
type = Exodus
[]
[]
(tutorial/tutorial06-Building-InputFile/RF_Plasma_Blank.i)
#In this tutorial, users input the missing data for
#Zapdos’s Drift-Diffusion Action and CRANE’s Reactions Action.
#The simulation is a simple electron and ion only argon plasma,
#where “reaction1” is the metastable excitation reaction
#and “reaction2” is ionization. The reaction coefficients are in “rate” form.
#A uniform scaling factor of the mesh.
#E.g if set to 1.0, there is not scaling
# and if set to 0.010, there mesh is scaled by a cm
dom0Scale=25.4e-3
[GlobalParams]
#Scales the potential by V or kV
potential_units = kV
#Converts density from #/m^3 to moles/m^3
use_moles = true
[]
[Mesh]
#Mesh is define by a Gmsh file
[geo]
type = FileMeshGenerator
file = 'Lymberopoulos_paper.msh'
[]
#Renames all sides with the specified normal
#For 1D, this is used to rename the end points of the mesh
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = geo
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
#Defines the problem type, such as FE, eigen value problem, etc.
[Problem]
type = FEProblem
[]
[DriftDiffusionAction]
[Plasma]
#User define name for electrons (usually 'em')
electrons =
#User define name for ions
charged_particle =
#User define name for potential (usually 'potential')
potential =
#Defines if this potential exist in only one block/material (set 'true' for single gases)
Is_potential_unique =
#User define name for the electron mean energy density (usually 'mean_en')
mean_energy =
#The position scaling for the mesh, define at top of input file
position_units = ${dom0Scale}
#Additional outputs, such as ElectronTemperature, Current, and EField.
Additional_Outputs =
[]
[]
[Reactions]
[Gas]
#Name of reactant species that are variables
species =
#Name of reactant species that are auxvariables
aux_species =
#Type of coefficient (rate or townsend)
reaction_coefficient_format =
#Name of background gas
gas_species =
#Name of the electron mean energy density (usually 'mean_en')
electron_energy =
#Name of the electrons (usually 'em')
electron_density =
#Defines if electrons are tracked
include_electrons =
#Name of name for potential (usually 'potential')
potential =
#Defines if log form is used (true for Zapdos)
use_log = true
#Defines if automatic differentiation is used (true for Zapdos)
use_ad = true
#The position scaling for the mesh, define at top of input file
position_units = ${dom0Scale}
#Name of material block ('0' for an user undefined block)
block = 0
#Inputs of the plasma chemsity
#e.g. Reaction : Constant or EEDF dependent [Threshold Energy] (Text file name)
# em + Ar -> em + Ar* : EEDF [-11.56] (reaction1)
reactions =
[]
[]
[AuxVariables]
#Add a scaled position units used for plotting other element AuxVariables
[x_node]
[]
#Background gas (e.g Ar)
[Ar]
[]
[]
[AuxKernels]
#Add at scaled position units used for plotting other element AuxVariables
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
#Background gas number density (e.g. for 1Torr)
[Ar_val]
type = FunctionAux
variable = Ar
function = 'log(3.22e22/6.022e23)'
execute_on = INITIAL
[]
[]
#Currently there is no Action for BC (but one is currently in development)
#Below is the Lymberopulos family of BC
#(For other BC example, please look at Tutorial 04 and Tutorial 06)
[BCs]
#Voltage Boundary Condition Ffor a Power-Ground RF Discharge
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#Boundary conditions for electons
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right left'
emission_coeffs = 0.01 #Secondary electron coeff.
ks = 1.19e5 #Thermal electron velocity
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#Boundary conditions for ions
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right left'
position_units = ${dom0Scale}
[]
#Boundary conditions for mean energy
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5 #Electron Temperature in eV
boundary = 'right left'
[]
[]
#Initial conditions for variables.
#If left undefine, the IC is zero
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
#Define function used throughout the input file (e.g. BCs and ICs)
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = '0.100 * (25.4e-3 - x)'
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log(3./2.) + log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[]
[Materials]
#The material properties for electrons.
#Also hold universal constant, such as Avogadro's number, elementary charge, etc.
[GasBasics]
type = GasElectronMoments
#False means constant electron coeff, defined by user
interp_trans_coeffs = false
#Leave as false (CRANE accounts of elastic coeff.)
interp_elastic_coeff = false
#Leave as false, unless computational error is due to rapid coeff. changes
ramp_trans_coeffs = false
#User difine pressure in pa
user_p_gas = 133.322
#Name for electrons (usually 'em')
em = em
#Name for potential (usually 'potential')
potential = potential
#Name for the electron mean energy density (usually 'mean_en')
mean_en = mean_en
#User define electron mobility coeff. (define as 0.0 if not used)
user_electron_mobility = 30.0
#User define electron diffusion coeff. (define as 0.0 if not used)
user_electron_diffusion_coeff = 119.8757763975
#Name of text file with electron properties
property_tables_file = rate_coefficients/electron_moments.txt
[]
#The material properties of the ion
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
#The material properties of the background gas
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[]
#Preconditioning options
#Learn more at: https://mooseframework.inl.gov/syntax/Preconditioning/index.html
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
#How to execute the problem.
#Defines type of solve (such as steady or transient),
# solve type (Newton, PJFNK, etc.) and tolerances
[Executioner]
type = Transient
end_time = 7.3746e-5
dt = 1e-9
dtmin = 1e-14
scheme = bdf2
solve_type = NEWTON
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 1e-3'
nl_rel_tol = 1e-08
l_max_its = 20
[]
#Defines the output type of the file (multiple output files can be define per run)
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/Conference_Syntax_Tests/Lymberopoulos_with_argon_metastables.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Lymberopoulos.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[]
[Kernels]
#Electron Equations (Same as in paper)
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations (Same as in paper)
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations (Same as in paper)
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations (Same as in paper)
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Since the paper uses electron temperature as a variable, the energy equation is in
#a different form but should be the same physics
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
[]
[AuxVariables]
#[emDeBug]
#[]
#[Ar+_DeBug]
#[]
#[Ar*_DeBug]
#[]
#[mean_enDeBug]
#[]
[Te]
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Ar]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
#[emDeBug]
# type = DebugResidualAux
# variable = emDeBug
# debug_variable = em
# #execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
#[]
#[Ar+_DeBug]
# type = DebugResidualAux
# variable = Ar+_DeBug
# debug_variable = Ar+
# #execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
#[]
#[mean_enDeBug]
# type = DebugResidualAux
# variable = mean_enDeBug
# debug_variable = mean_en
# #execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
#[]
#[Ar*_DeBug]
# type = DebugResidualAux
# variable = Ar*_DeBug
# debug_variable = Ar*
# #execute_on = 'LINEAR NONLINEAR TIMESTEP_BEGIN'
#[]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[Te]
type = ElectronTemperature
variable = Te
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[em_lin]
type = DensityMoles
variable = em_lin
density_log = em
[]
[Ar+_lin]
type = DensityMoles
variable = Ar+_lin
density_log = Ar+
[]
[Ar*_lin]
type = DensityMoles
variable = Ar*_lin
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[Efield_calc]
type = Efield
component = 0
potential = potential
variable = Efield
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Ar]
type = ADCurrent
potential = potential
density_log = Ar+
variable = Current_Ar
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
[]
#New Boundary conditions for electons, same as in paper
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
#emission_coeffs = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
#emission_coeffs = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_right_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'right'
value = 100
[]
[Ar*_physical_left_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'left'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = '0.100 * (25.4e-3 - x)'
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log(3./2.) + log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_0]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
reaction = 'em + Ar* -> em + Ar'
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
reaction = 'em + Ar* -> em + em + Ar+'
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 0.00737463126
#end_time = 3e-7
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
nl_rel_tol = 1e-08
#nl_abs_tol = 7.6e-5 #Commit out do to test falure on Mac
dtmin = 1e-14
l_max_its = 20
#Time steps based on the inverse of the plasma frequency
[TimeSteppers]
[Postprocessor]
type = PostprocessorDT
postprocessor = InversePlasmaFreq
[]
[]
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]
(tutorial/tutorial06-Building-InputFile/RF_Plasma_WithOut_Metastables.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[geo]
type = FileMeshGenerator
file = 'Lymberopoulos_paper.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = geo
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
[]
[DriftDiffusionAction]
[Plasma]
electrons = em
charged_particle = Ar+
potential = potential
Is_potential_unique = true
mean_energy = mean_en
position_units = ${dom0Scale}
Additional_Outputs = 'ElectronTemperature Current EField'
[]
[]
[Reactions]
[Argon]
species = 'em Ar+'
aux_species = 'Ar'
reaction_coefficient_format = 'rate'
gas_species = 'Ar'
electron_energy = 'mean_en'
electron_density = 'em'
include_electrons = true
file_location = 'rate_coefficients'
potential = 'potential'
use_log = true
use_ad = true
position_units = ${dom0Scale}
block = 0
reactions = 'em + Ar -> em + Ar* : EEDF [-11.56] (reaction1)
em + Ar -> em + em + Ar+ : EEDF [-15.7] (reaction2)'
[]
[]
[AuxVariables]
[x_node]
[]
[Ar]
[]
[]
[AuxKernels]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[Ar_val]
type = FunctionAux
variable = Ar
function = 'log(3.22e22/6.022e23)'
execute_on = INITIAL
[]
[]
[BCs]
#Voltage Boundary Condition
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#Boundary conditions for electons
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
ks = 1.19e5
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
ks = 1.19e5
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#Boundary conditions for ions
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#Boundary conditions for mean energy
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = '0.100 * (25.4e-3 - x)'
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log(3./2.) + log((1e13 + 1e15 * (1-x/1)^2 * (x/1)^2)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = rate_coefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 7.3746e-5
dt = 1e-9
dtmin = 1e-14
scheme = bdf2
solve_type = NEWTON
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 1e-3'
nl_rel_tol = 1e-08
l_max_its = 20
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/accelerations/Acceleration_By_Averaging_acceleration_sub.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Lymberopoulos_paper.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[]
[Kernels]
#Electron Equations
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
mean_energy = mean_en
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step - wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
mean_energy = mean_en
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
mean_energy = mean_en
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step - wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
mean_energy = mean_en
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step - wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two - body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three - body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Electron Energy Equations
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step - wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
[]
[AuxVariables]
[Ar]
[]
[]
[AuxKernels]
[Ar_val]
type = ConstantAux
variable = Ar
#value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[]
[BCs]
#Voltage Boundary Condition
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#Boundary conditions for electons
[em_physical_right]
type = LymberopoulosElectronBC
variable = em
boundary = 'right'
emission_coeffs = 0.01
#gamma = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
[em_physical_left]
type = LymberopoulosElectronBC
variable = em
boundary = 'left'
emission_coeffs = 0.01
#gamma = 1
ks = 1.19e5
#ks = 0.0
ions = Ar+
potential = potential
position_units = ${dom0Scale}
[]
#Boundary conditions for ions
[Ar+_physical_right_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'right'
position_units = ${dom0Scale}
[]
[Ar+_physical_left_advection]
type = LymberopoulosIonBC
variable = Ar+
potential = potential
boundary = 'left'
position_units = ${dom0Scale}
[]
#Boundary conditions for ions Metastable
[Ar*_physical_right_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'right'
value = 1e-5
[]
[Ar*_physical_left_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'left'
value = 1e-5
[]
#Boundary conditions for electron mean energy
[mean_en_physical_right]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'right'
[]
[mean_en_physical_left]
type = ElectronTemperatureDirichletBC
variable = mean_en
electrons = em
value = 0.5
boundary = 'left'
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*pi*13.56e6*t)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = false
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_electron_mobility = 30.0
user_electron_diffusion_coeff = 119.8757763975
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-3
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_0]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar -> em + Ar*.txt'
reaction = 'em + Ar -> em + Ar*'
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar -> em + em + Ar+.txt'
reaction = 'em + Ar -> em + em + Ar+'
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar* -> em + Ar.txt'
reaction = 'em + Ar* -> em + Ar'
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/reaction_em + Ar* -> em + em + Ar+.txt'
reaction = 'em + Ar* -> em + em + Ar+'
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-43
reaction_rate_value = 39890.9324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 73.74631268e-9
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
dtmin = 1e-14
l_max_its = 20
scheme = bdf2
dt = 1e-9
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]