- boundaryThe list of boundary IDs from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Unit:(no unit assumed)
Controllable:No
Description:The list of boundary IDs from the mesh where this object applies
- electronsThe electron density in log form
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The electron density in log form
- position_unitsUnits of position.
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Units of position.
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
SakiyamaEnergyDiffusionBC
Kinetic advective electron energy boundary condition (Based on Sakiyama and Graves (2007))
Overview
SakiyamaEnergyDiffusionBC
is a thermal outflow boundary condition.
The thermal driven outflow is defined as
Where is the flux normal to the boundary, is the normal vector of the boundary, is the electron density, is the elementary charge, and is the mean energy density. When converting the density to log form and applying a scaling factor of the mesh, the strong form for SakiyamaEnergyDiffusionBC
is defined as
Where is the molar density of the species in log form.
Example Input File Syntax
[BCs]
[mean_en_physical_diffusion]
type = SakiyamaEnergyDiffusionBC
variable = mean_en
electrons = em
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[]
(test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i)Input Parameters
- displacementsThe displacements
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The displacements
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Unit:(no unit assumed)
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, system
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Unit:(no unit assumed)
Options:nontime, time
Controllable:No
Description:The tag for the vectors this Kernel should fill
Tagging Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
Input Files
- (test/tests/DriftDiffusionAction/2D_RF_Plasma_no_actions.i)
- (test/tests/Conference_Syntax_Tests/Lymberopoulos_with_argon_metastables_2D_At1Torr.i)
- (test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i)
- (tutorial/tutorial04-PressureVsTe/RF_Plasma_WithOut_Metastables-1Torr.i)
- (test/tests/Conference_Syntax_Tests/Lymberopoulos_with_argon_metastables_2D_At100mTorr.i)
- (test/tests/Lymberopoulos_rf_discharge/Lymberopoulos_with_argon_metastables_2D_At100mTorr_CoarseMesh.i)
References
- Yukinori Sakiyama and David B Graves.
Nonthermal atmospheric rf plasma in one-dimensional spherical coordinates: asymmetric sheath structure and the discharge mechanism.
Journal of applied physics, 2007.
doi:https://doi.org/10.1063/1.2715745.[BibTeX]
@article{sakiyama2007nonthermal, author = "Sakiyama, Yukinori and Graves, David B", title = "Nonthermal atmospheric rf plasma in one-dimensional spherical coordinates: asymmetric sheath structure and the discharge mechanism", journal = "Journal of applied physics", volume = "101", number = "7", year = "2007", publisher = "AIP Publishing", doi = "https://doi.org/10.1063/1.2715745" }
(test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = V
use_moles = true
[]
[Mesh]
type = FileMesh
file = 'GEC_mesh_coarse.msh'
coord_type = RZ
rz_coord_axis = Y
[]
#Effective potentials and their kernels are not defined by the
#DriftDiffusionAction, but charged particles effective by
#this potential can by defined by the action.
[Variables]
[potential_ion]
[]
[]
#Action the supplies the drift-diffusion equations
#This action also adds JouleHeating and the ChargeSourceMoles_KV Kernels
[DriftDiffusionAction]
[Plasma]
electrons = em
secondary_charged_particles = Ar+
Neutrals = Ar*
mean_energy = mean_en
potential = potential
eff_potentials = potential_ion
Is_potential_unique = true
using_offset = false
position_units = ${dom0Scale}
Additional_Outputs = 'ElectronTemperature Current EField'
[]
[]
#The Kernels supply the sources terms
[Kernels]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
# Energy loss from elastic collisions
[Elastic_loss]
type = EEDFElasticLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar'
[]
#Effective potential for the Ions
[Ion_potential_time_deriv]
type = TimeDerivative
variable = potential_ion
[]
[Ion_potential_reaction]
type = ScaledReaction
variable = potential_ion
collision_freq = 1283370.875
[]
[Ion_potential_coupled_force]
type = CoupledForce
variable = potential_ion
v = potential
coef = 1283370.875
[]
[]
[AuxVariables]
[x_node]
[]
[y_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[]
[AuxKernels]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[x_ng]
type = Position
variable = x_node
component = 0
position_units = ${dom0Scale}
[]
[y_ng]
type = Position
variable = y_node
component = 1
position_units = ${dom0Scale}
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e2
value = -5.231208
execute_on = INITIAL
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_top_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Top_Electrode'
function = potential_top_bc_func
preset = false
[]
[potential_bottom_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Bottom_Electrode'
function = potential_bottom_bc_func
preset = false
[]
[potential_dirichlet_bottom_plate]
type = DirichletBC
variable = potential
boundary = 'Walls'
value = 0
preset = false
[]
[potential_Dielectric]
type = EconomouDielectricBC
variable = potential
boundary = 'Top_Insulator Bottom_Insulator'
electrons = em
ions = Ar+
ion_potentials = potential_ion
electron_energy = mean_en
dielectric_constant = 1.859382e-11
thickness = 0.0127
emission_coeffs = 0.01
position_units = ${dom0Scale}
[]
#New Boundary conditions for electons, same as in paper
[em_physical_diffusion]
type = SakiyamaElectronDiffusionBC
variable = em
electron_energy = mean_en
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[em_Ar+_second_emissions]
type = SakiyamaSecondaryElectronBC
variable = em
potential = potential_ion
ions = Ar+
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_advection]
type = SakiyamaIonAdvectionBC
variable = Ar+
potential = potential_ion
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_diffusion]
type = SakiyamaEnergyDiffusionBC
variable = mean_en
electrons = em
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[mean_en_Ar+_second_emissions]
type = SakiyamaEnergySecondaryElectronBC
variable = mean_en
electrons = em
ions = Ar+
potential = potential_ion
Tse_equal_Te = true
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = meta_density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_top_bc_func]
type = ParsedFunction
expression = '50*sin(2*3.1415926*13.56e6*t)'
[]
[potential_bottom_bc_func]
type = ParsedFunction
expression = '-50*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = 0
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e14)/6.022e23)'
[]
[meta_density_ic_func]
type = ParsedFunction
expression = 'log((1e16)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log((3./2.) * 4) + log((1e14)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = true
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_se_coeff = 0.00
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 1.44409938
diffusivity = 6.428571e-2
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-2
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_00]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_elastic.txt'
reaction = 'em + Ar -> em + Ar'
electrons = em
[]
[reaction_0]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
mean_energy = mean_en
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
mean_energy = mean_en
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
reaction = 'em + Ar* -> em + Ar'
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
mean_energy = mean_en
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
reaction = 'em + Ar* -> em + em + Ar+'
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
mean_energy = mean_en
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
#end_time = 7.4e-3
end_time = 1e-7
dtmax = 1e-9
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
nl_rel_tol = 1e-12
#nl_abs_tol = 7.6e-5
dtmin = 1e-14
l_max_its = 20
#Time steps based on the inverse of the plasma frequency
#[TimeSteppers]
# [Postprocessor]
# type = PostprocessorDT
# postprocessor = InversePlasmaFreq
# scale = 0.1
# []
#[]
[]
[Outputs]
file_base = '2D_RF_out'
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/DriftDiffusionAction/2D_RF_Plasma_no_actions.i)
#This is the input file that supplied the gold output file.
#It is the same as the input file in
#tests/Lymberopoulos_rf_discharge/Lymberopoulos_with_argon_metastables_2D_At100mTorr_CoarseMesh.i,
#execpt some of the Aux Variables are renamed for the Action test
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = V
use_moles = true
[]
[Mesh]
type = FileMesh
file = 'GEC_mesh_coarse.msh'
coord_type = RZ
rz_coord_axis = Y
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[potential_ion]
[]
[]
[Kernels]
#Electron Equations (Same as in paper)
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations (Same as in paper)
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential_ion
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations (Same as in paper)
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations (Same as in paper)
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Since the paper uses electron temperature as a variable, the energy equation is in
#a different form but should be the same physics
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
# Energy loss from elastic collisions
[Elastic_loss]
type = EEDFElasticLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar'
[]
#Effective potential for the Ions
[Ion_potential_time_deriv]
type = TimeDerivative
variable = potential_ion
[]
[Ion_potential_reaction]
type = ScaledReaction
variable = potential_ion
collision_freq = 1283370.875
[]
[Ion_potential_coupled_force]
type = CoupledForce
variable = potential_ion
v = potential
coef = 1283370.875
[]
[]
[AuxVariables]
[e_temp]
order = CONSTANT
family = MONOMIAL
[]
[x_position]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[y_position]
order = CONSTANT
family = MONOMIAL
[]
[y_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[em_density]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_density]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_density]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[Efieldx]
order = CONSTANT
family = MONOMIAL
[]
[Efieldy]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[Current_Ar+]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[]
[AuxKernels]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = x_position
component = 0
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
component = 0
position_units = ${dom0Scale}
[]
[y_g]
type = Position
variable = y_position
component = 1
position_units = ${dom0Scale}
[]
[y_ng]
type = Position
variable = y_node
component = 1
position_units = ${dom0Scale}
[]
[em_density]
type = DensityMoles
variable = em_density
density_log = em
[]
[Ar+_density]
type = DensityMoles
variable = Ar+_density
density_log = Ar+
[]
[Ar*_density]
type = DensityMoles
variable = Ar*_density
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e2
value = -5.231208
execute_on = INITIAL
[]
[Efieldx_calc]
type = Efield
component = 0
potential = potential
variable = Efieldx
position_units = ${dom0Scale}
[]
[Efieldy_calc]
type = Efield
component = 1
potential = potential
variable = Efieldy
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
block = 'plasma'
position_units = ${dom0Scale}
[]
[Current_Ar]
type = ADCurrent
potential = potential_ion
density_log = Ar+
variable = Current_Ar+
art_diff = false
block = 'plasma'
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_top_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Top_Electrode'
function = potential_top_bc_func
[]
[potential_bottom_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Bottom_Electrode'
function = potential_bottom_bc_func
[]
[potential_dirichlet_bottom_plate]
type = DirichletBC
variable = potential
boundary = 'Walls'
value = 0
[]
[potential_Dielectric]
type = EconomouDielectricBC
variable = potential
boundary = 'Top_Insulator Bottom_Insulator'
electrons = em
ions = Ar+
ion_potentials = potential_ion
electron_energy = mean_en
dielectric_constant = 1.859382e-11
thickness = 0.0127
emission_coeffs = 0.01
position_units = ${dom0Scale}
[]
#New Boundary conditions for electons, same as in paper
[em_physical_diffusion]
type = SakiyamaElectronDiffusionBC
variable = em
electron_energy = mean_en
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[em_Ar+_second_emissions]
type = SakiyamaSecondaryElectronBC
variable = em
potential = potential_ion
ions = Ar+
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_advection]
type = SakiyamaIonAdvectionBC
variable = Ar+
potential = potential_ion
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_diffusion]
type = SakiyamaEnergyDiffusionBC
variable = mean_en
electrons = em
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[mean_en_Ar+_second_emissions]
type = SakiyamaEnergySecondaryElectronBC
variable = mean_en
electrons = em
ions = Ar+
potential = potential_ion
Tse_equal_Te = true
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = meta_density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_top_bc_func]
type = ParsedFunction
expression = '50*sin(2*3.1415926*13.56e6*t)'
[]
[potential_bottom_bc_func]
type = ParsedFunction
expression = '-50*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = 0
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e14)/6.022e23)'
[]
[meta_density_ic_func]
type = ParsedFunction
expression = 'log((1e16)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log((3./2.) * 4) + log((1e14)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = true
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_se_coeff = 0.00
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 1.44409938
diffusivity = 6.428571e-2
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-2
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_00]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_elastic.txt'
reaction = 'em + Ar -> em + Ar'
electrons = em
[]
[reaction_0]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
mean_energy = mean_en
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
mean_energy = mean_en
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
reaction = 'em + Ar* -> em + Ar'
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
mean_energy = mean_en
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
reaction = 'em + Ar* -> em + em + Ar+'
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
mean_energy = mean_en
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
#end_time = 7.4e-3
end_time = 1e-7
dtmax = 1e-9
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
nl_rel_tol = 1e-12
#nl_abs_tol = 7.6e-5
dtmin = 1e-14
l_max_its = 20
#Time steps based on the inverse of the plasma frequency
#[TimeSteppers]
# [Postprocessor]
# type = PostprocessorDT
# postprocessor = InversePlasmaFreq
# scale = 0.1
# []
#[]
[]
[Outputs]
file_base = '2D_RF_out'
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/Conference_Syntax_Tests/Lymberopoulos_with_argon_metastables_2D_At1Torr.i)
dom0Scale = 25.4e-3
#dom0Scale=1.0
[GlobalParams]
potential_units = V
use_moles = true
[]
[Mesh]
type = FileMesh
file = 'GEC_mesh.msh'
coord_type = RZ
rz_coord_axis = Y
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[potential_ion]
[]
[]
[Kernels]
#Electron Equations (Same as in paper)
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations (Same as in paper)
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential_ion
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations (Same as in paper)
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations (Same as in paper)
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Since the paper uses electron temperature as a variable, the energy equation is in
#a different form but should be the same physics
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
# Energy loss from elastic collisions
[Elastic_loss]
type = EEDFElasticLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar'
[]
#Effective potential for the Ions
[Ion_potential_time_deriv]
type = TimeDerivative
variable = potential_ion
[]
[Ion_potential_reaction]
type = ScaledReaction
variable = potential_ion
collision_freq = 1283370.875
[]
[Ion_potential_coupled_force]
type = CoupledForce
variable = potential_ion
v = potential
coef = 1283370.875
[]
[]
[AuxVariables]
[emDeBug]
[]
[Ar+_DeBug]
[]
[Ar*_DeBug]
[]
[mean_enDeBug]
[]
[potential_DeBug]
[]
[Te]
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[y]
order = CONSTANT
family = MONOMIAL
[]
[y_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[Efieldx]
order = CONSTANT
family = MONOMIAL
[]
[Efieldy]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[Current_Ar]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[]
[AuxKernels]
#[emDeBug]
# type = DebugResidualAux
# variable = emDeBug
# debug_variable = em
#[]
#[Ar+_DeBug]
# type = DebugResidualAux
# variable = Ar+_DeBug
# debug_variable = Ar+
#[]
#[mean_enDeBug]
# type = DebugResidualAux
# variable = mean_enDeBug
# debug_variable = mean_en
#[]
#[Ar*_DeBug]
# type = DebugResidualAux
# variable = Ar*_DeBug
# debug_variable = Ar*
#[]
#[Potential_DeBug]
# type = DebugResidualAux
# variable = potential_DeBug
# debug_variable = potential
#[]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[Te]
type = ElectronTemperature
variable = Te
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[y_g]
type = Position
variable = y
position_units = ${dom0Scale}
[]
[y_ng]
type = Position
variable = y_node
position_units = ${dom0Scale}
[]
[em_lin]
type = DensityMoles
variable = em_lin
density_log = em
[]
[Ar+_lin]
type = DensityMoles
variable = Ar+_lin
density_log = Ar+
[]
[Ar*_lin]
type = DensityMoles
variable = Ar*_lin
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e22
value = -2.928623
execute_on = INITIAL
[]
[Efieldx_calc]
type = Efield
component = 0
potential = potential
variable = Efieldx
position_units = ${dom0Scale}
[]
[Efieldy_calc]
type = Efield
component = 1
potential = potential
variable = Efieldy
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
block = 'plasma'
position_units = ${dom0Scale}
[]
[Current_Ar]
type = ADCurrent
potential = potential_ion
density_log = Ar+
variable = Current_Ar
art_diff = false
block = 'plasma'
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_top_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Top_Electrode'
function = potential_top_bc_func
[]
[potential_bottom_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Bottom_Electrode'
function = potential_bottom_bc_func
[]
[potential_dirichlet_bottom_plate]
type = DirichletBC
variable = potential
boundary = 'Walls'
value = 0
[]
[potential_Dielectric]
type = EconomouDielectricBC
variable = potential
boundary = 'Top_Insulator Bottom_Insulator'
electrons = em
ions = Ar+
ion_potentials = potential_ion
electron_energy = mean_en
dielectric_constant = 1.859382e-11
thickness = 0.0127
emission_coeffs = 0.01
position_units = ${dom0Scale}
[]
#New Boundary conditions for electons, same as in paper
[em_physical_diffusion]
type = SakiyamaElectronDiffusionBC
variable = em
electron_energy = mean_en
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[em_Ar+_second_emissions]
type = SakiyamaSecondaryElectronBC
variable = em
potential = potential_ion
ions = Ar+
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_advection]
type = SakiyamaIonAdvectionBC
variable = Ar+
potential = potential_ion
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_diffusion]
type = SakiyamaEnergyDiffusionBC
variable = mean_en
electrons = em
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[mean_en_Ar+_second_emissions]
type = SakiyamaEnergySecondaryElectronBC
variable = mean_en
electrons = em
ions = Ar+
potential = potential_ion
Tse_equal_Te = true
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = meta_density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_top_bc_func]
type = ParsedFunction
expression = '30*sin(2*3.1415926*13.56e6*t)'
[]
[potential_bottom_bc_func]
type = ParsedFunction
expression = '-30*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = 0
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e14)/6.022e23)'
[]
[meta_density_ic_func]
type = ParsedFunction
expression = 'log((1e16)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log((3./2.)) + log((1e14)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = true
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_se_coeff = 0.00
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 1.44409938
diffusivity = 6.428571e-2
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-2
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_00]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_elastic.txt'
reaction = 'em + Ar -> em + Ar'
electrons = em
[]
[reaction_0]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
mean_energy = mean_en
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
mean_energy = mean_en
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
reaction = 'em + Ar* -> em + Ar'
mean_energy = mean_en
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
reaction = 'em + Ar* -> em + em + Ar+'
mean_energy = mean_en
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 7.4e-3
automatic_scaling = true
dtmax = 1e-9
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
nl_rel_tol = 1e-8
#nl_abs_tol = 7.6e-5
dtmin = 1e-14
l_max_its = 20
#Time steps based on the inverse of the plasma frequency
#[TimeSteppers]
# [Postprocessor]
# type = PostprocessorDT
# postprocessor = InversePlasmaFreq
# scale = 0.1
# []
#[]
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/DriftDiffusionAction/2D_RF_Plasma_actions.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = V
use_moles = true
[]
[Mesh]
type = FileMesh
file = 'GEC_mesh_coarse.msh'
coord_type = RZ
rz_coord_axis = Y
[]
#Effective potentials and their kernels are not defined by the
#DriftDiffusionAction, but charged particles effective by
#this potential can by defined by the action.
[Variables]
[potential_ion]
[]
[]
#Action the supplies the drift-diffusion equations
#This action also adds JouleHeating and the ChargeSourceMoles_KV Kernels
[DriftDiffusionAction]
[Plasma]
electrons = em
secondary_charged_particles = Ar+
Neutrals = Ar*
mean_energy = mean_en
potential = potential
eff_potentials = potential_ion
Is_potential_unique = true
using_offset = false
position_units = ${dom0Scale}
Additional_Outputs = 'ElectronTemperature Current EField'
[]
[]
#The Kernels supply the sources terms
[Kernels]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
# Energy loss from elastic collisions
[Elastic_loss]
type = EEDFElasticLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar'
[]
#Effective potential for the Ions
[Ion_potential_time_deriv]
type = TimeDerivative
variable = potential_ion
[]
[Ion_potential_reaction]
type = ScaledReaction
variable = potential_ion
collision_freq = 1283370.875
[]
[Ion_potential_coupled_force]
type = CoupledForce
variable = potential_ion
v = potential
coef = 1283370.875
[]
[]
[AuxVariables]
[x_node]
[]
[y_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[]
[AuxKernels]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[x_ng]
type = Position
variable = x_node
component = 0
position_units = ${dom0Scale}
[]
[y_ng]
type = Position
variable = y_node
component = 1
position_units = ${dom0Scale}
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e2
value = -5.231208
execute_on = INITIAL
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_top_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Top_Electrode'
function = potential_top_bc_func
preset = false
[]
[potential_bottom_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Bottom_Electrode'
function = potential_bottom_bc_func
preset = false
[]
[potential_dirichlet_bottom_plate]
type = DirichletBC
variable = potential
boundary = 'Walls'
value = 0
preset = false
[]
[potential_Dielectric]
type = EconomouDielectricBC
variable = potential
boundary = 'Top_Insulator Bottom_Insulator'
electrons = em
ions = Ar+
ion_potentials = potential_ion
electron_energy = mean_en
dielectric_constant = 1.859382e-11
thickness = 0.0127
emission_coeffs = 0.01
position_units = ${dom0Scale}
[]
#New Boundary conditions for electons, same as in paper
[em_physical_diffusion]
type = SakiyamaElectronDiffusionBC
variable = em
electron_energy = mean_en
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[em_Ar+_second_emissions]
type = SakiyamaSecondaryElectronBC
variable = em
potential = potential_ion
ions = Ar+
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_advection]
type = SakiyamaIonAdvectionBC
variable = Ar+
potential = potential_ion
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_diffusion]
type = SakiyamaEnergyDiffusionBC
variable = mean_en
electrons = em
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[mean_en_Ar+_second_emissions]
type = SakiyamaEnergySecondaryElectronBC
variable = mean_en
electrons = em
ions = Ar+
potential = potential_ion
Tse_equal_Te = true
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = meta_density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_top_bc_func]
type = ParsedFunction
expression = '50*sin(2*3.1415926*13.56e6*t)'
[]
[potential_bottom_bc_func]
type = ParsedFunction
expression = '-50*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = 0
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e14)/6.022e23)'
[]
[meta_density_ic_func]
type = ParsedFunction
expression = 'log((1e16)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log((3./2.) * 4) + log((1e14)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = true
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_se_coeff = 0.00
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 1.44409938
diffusivity = 6.428571e-2
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-2
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_00]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_elastic.txt'
reaction = 'em + Ar -> em + Ar'
electrons = em
[]
[reaction_0]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
mean_energy = mean_en
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
mean_energy = mean_en
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
reaction = 'em + Ar* -> em + Ar'
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
mean_energy = mean_en
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
reaction = 'em + Ar* -> em + em + Ar+'
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
mean_energy = mean_en
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
#end_time = 7.4e-3
end_time = 1e-7
dtmax = 1e-9
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
nl_rel_tol = 1e-12
#nl_abs_tol = 7.6e-5
dtmin = 1e-14
l_max_its = 20
#Time steps based on the inverse of the plasma frequency
#[TimeSteppers]
# [Postprocessor]
# type = PostprocessorDT
# postprocessor = InversePlasmaFreq
# scale = 0.1
# []
#[]
[]
[Outputs]
file_base = '2D_RF_out'
perf_graph = true
[out]
type = Exodus
[]
[]
(tutorial/tutorial04-PressureVsTe/RF_Plasma_WithOut_Metastables-1Torr.i)
#This tutorial is of an argon CCP discharge running at
#different pressures. In this case, the electron and ion coefficient are
#linearly proportional. For the following pressures,
#(0.1, 1, 10, 100, 1000 Torr)
#change the following lines (144, 245, and 257-258).
#A uniform scaling factor of the mesh.
#E.g if set to 1.0, there is not scaling
# and if set to 0.010, there mesh is scaled by a cm
dom0Scale = 1.0
[GlobalParams]
#Scales the potential by V or kV
potential_units = kV
#Converts density from #/m^3 to moles/m^3
use_moles = true
[]
[Mesh]
#Mesh is defined by a previous output file
[geo]
type = FileMeshGenerator
file = 'RF_Plasma_WithOut_Metastables_IC.e'
use_for_exodus_restart = true
[]
#Renames all sides with the specified normal
#For 1D, this is used to rename the end points of the mesh
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = geo
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
#Defines the problem type, such as FE, eigen value problem, etc.
[Problem]
type = FEProblem
[]
#Defining IC from previous output file
# (The ICs block is not used in this case)
[Variables]
[em]
initial_from_file_var = em
[]
[potential]
initial_from_file_var = potential
[]
[Ar+]
initial_from_file_var = Ar+
[]
[mean_en]
initial_from_file_var = mean_en
[]
[]
[DriftDiffusionAction]
[Plasma]
#User define name for electrons (usually 'em')
electrons = em
#User define name for ions
charged_particle = Ar+
#User define name for potential (usually 'potential')
potential = potential
#Defines if this potential exist in only one block/material (set 'true' for single gases)
Is_potential_unique = true
#User define name for the electron mean energy density (usually 'mean_en')
mean_energy = mean_en
#The position scaling for the mesh, define at top of input file
position_units = ${dom0Scale}
#Additional outputs, such as ElectronTemperature, Current, and EField.
Additional_Outputs = 'ElectronTemperature Current EField'
[]
[]
[Reactions]
[Argon]
#Name of reactant species that are variables
species = 'em Ar+'
#Name of reactant species that are auxvariables
aux_species = 'Ar'
#Type of coefficient (rate or townsend)
reaction_coefficient_format = 'rate'
#Name of background gas
gas_species = 'Ar'
#Name of the electron mean energy density (usually 'mean_en')
electron_energy = 'mean_en'
#Name of the electrons (usually 'em')
electron_density = 'em'
#Defines if electrons are tracked
include_electrons = true
#Defines directory holding rate text files
file_location = 'rate_coefficients'
#Name of name for potential (usually 'potential')
potential = 'potential'
#Defines if log form is used (true for Zapdos)
use_log = true
#Defines if automatic differentiation is used (true for Zapdos)
use_ad = true
#The position scaling for the mesh, define at top of input file
position_units = ${dom0Scale}
#Name of material block ('0' for an user undefined block)
block = 0
#Inputs of the plasma chemsity
#e.g. Reaction : Constant or EEDF dependent [Threshold Energy] (Text file name)
# em + Ar -> em + Ar* : EEDF [-11.56] (reaction1)
reactions = 'em + Ar -> em + Ar* : EEDF [-11.56] (reaction1)
em + Ar -> em + em + Ar+ : EEDF [-15.7] (reaction2)'
[]
[]
[AuxVariables]
#Add a scaled position units used for plotting other element AuxVariables
[x]
order = CONSTANT
family = MONOMIAL
[]
#Background gas (e.g Ar)
[Ar]
[]
[]
[AuxKernels]
#Add at scaled position units used for plotting other element AuxVariables
[x_ng]
type = Position
variable = x
position_units = ${dom0Scale}
[]
#Background gas number density (e.g. for 1Torr)
[Ar_val]
type = FunctionAux
variable = Ar
function = 'log(3.22e22/6.022e23)'
execute_on = INITIAL
[]
[]
#Define function used throughout the input file (e.g. BCs)
[Functions]
[potential_bc_func]
type = ParsedFunction
expression = '0.100*sin(2*3.1415926*13.56e6*t)'
[]
[]
#Currently there is no Action for BC (but one is currently in development)
#Below is the Sakiyama family of BC
#(For other BC example, please look at Tutorial 05 and Tutorial 06)
[BCs]
#Voltage Boundary Condition
[potential_left]
type = FunctionDirichletBC
variable = potential
boundary = 'left'
function = potential_bc_func
preset = false
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = 'right'
value = 0
preset = false
[]
#Boundary conditions for electons
[em_physical_diffusion]
type = SakiyamaElectronDiffusionBC
variable = em
electron_energy = mean_en
boundary = 'left right'
position_units = ${dom0Scale}
[]
[em_Ar+_second_emissions]
type = SakiyamaSecondaryElectronBC
variable = em
potential = potential
ions = Ar+
emission_coeffs = 0.01
boundary = 'left right'
position_units = ${dom0Scale}
[]
#Boundary conditions for ions
[Ar+_physical_advection]
type = SakiyamaIonAdvectionBC
variable = Ar+
potential = potential
boundary = 'left right'
position_units = ${dom0Scale}
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_diffusion]
type = SakiyamaEnergyDiffusionBC
variable = mean_en
electrons = em
boundary = 'left right'
position_units = ${dom0Scale}
[]
[mean_en_Ar+_second_emissions]
type = SakiyamaEnergySecondaryElectronBC
variable = mean_en
electrons = em
ions = Ar+
potential = potential
Tse_equal_Te = false
secondary_electron_energy = 1
emission_coeffs = 0.01
boundary = 'left right'
position_units = ${dom0Scale}
[]
[]
[Materials]
#The material properties for electrons.
#Also hold universal constant, such as Avogadro's number, elementary charge, etc.
[GasBasics]
type = GasElectronMoments
#True means variable electron coeff, defined by user
interp_trans_coeffs = true
#Leave as false (CRANE accounts of elastic coeff.)
interp_elastic_coeff = false
#Leave as false, unless computational error is due to rapid coeff. changes
ramp_trans_coeffs = false
#Name for electrons (usually 'em')
em = em
#Name for potential (usually 'potential')
potential = potential
#Name for the electron mean energy density (usually 'mean_en')
mean_en = mean_en
#User difine pressure in pa
user_p_gas = 133.322
#True if pressure dependent coeff.
pressure_dependent_electron_coeff = true
#Name of text file with electron properties
property_tables_file = rate_coefficients/electron_moments.txt
[]
#The material properties of the ion
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 0.144409938
diffusivity = 6.428571e-3
[]
[gas_species_2]
#The material properties of the background gas
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[]
[Postprocessors]
[ElectronTemp_Average]
type = ElementAverageValue
variable = e_temp
[]
[]
#Preconditioning options
#Learn more at: https://mooseframework.inl.gov/syntax/Preconditioning/index.html
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
#How to execute the problem.
#Defines type of solve (such as steady or transient),
# solve type (Newton, PJFNK, etc.) and tolerances
[Executioner]
type = Transient
start_time = 7.3746e-5
end_time = 9.3746e-5
dt = 1e-9
dtmin = 1e-14
scheme = bdf2
solve_type = NEWTON
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 1e-3'
nl_rel_tol = 1e-08
l_max_its = 20
[]
#Defines the output type of the file (multiple output files can be define per run)
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/Conference_Syntax_Tests/Lymberopoulos_with_argon_metastables_2D_At100mTorr.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = V
use_moles = true
[]
[Mesh]
type = FileMesh
file = 'GEC_mesh.msh'
coord_type = RZ
rz_coord_axis = Y
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[potential_ion]
[]
[]
[Kernels]
#Electron Equations (Same as in paper)
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations (Same as in paper)
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential_ion
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations (Same as in paper)
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations (Same as in paper)
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Since the paper uses electron temperature as a variable, the energy equation is in
#a different form but should be the same physics
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
# Energy loss from elastic collisions
[Elastic_loss]
type = EEDFElasticLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar'
[]
#Effective potential for the Ions
[Ion_potential_time_deriv]
type = TimeDerivative
variable = potential_ion
[]
[Ion_potential_reaction]
type = ScaledReaction
variable = potential_ion
collision_freq = 1283370.875
[]
[Ion_potential_coupled_force]
type = CoupledForce
variable = potential_ion
v = potential
coef = 1283370.875
[]
[]
[AuxVariables]
[emDeBug]
[]
[Ar+_DeBug]
[]
[Ar*_DeBug]
[]
[mean_enDeBug]
[]
[potential_DeBug]
[]
[Te]
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[y]
order = CONSTANT
family = MONOMIAL
[]
[y_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[Efieldx]
order = CONSTANT
family = MONOMIAL
[]
[Efieldy]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[Current_Ar]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[]
[AuxKernels]
#[emDeBug]
# type = DebugResidualAux
# variable = emDeBug
# debug_variable = em
#[]
#[Ar+_DeBug]
# type = DebugResidualAux
# variable = Ar+_DeBug
# debug_variable = Ar+
#[]
#[mean_enDeBug]
# type = DebugResidualAux
# variable = mean_enDeBug
# debug_variable = mean_en
#[]
#[Ar*_DeBug]
# type = DebugResidualAux
# variable = Ar*_DeBug
# debug_variable = Ar*
#[]
#[Potential_DeBug]
# type = DebugResidualAux
# variable = potential_DeBug
# debug_variable = potential
#[]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[Te]
type = ElectronTemperature
variable = Te
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[y_g]
type = Position
variable = y
position_units = ${dom0Scale}
[]
[y_ng]
type = Position
variable = y_node
position_units = ${dom0Scale}
[]
[em_lin]
type = DensityMoles
variable = em_lin
density_log = em
[]
[Ar+_lin]
type = DensityMoles
variable = Ar+_lin
density_log = Ar+
[]
[Ar*_lin]
type = DensityMoles
variable = Ar*_lin
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e2
value = -5.231208
execute_on = INITIAL
[]
[Efieldx_calc]
type = Efield
component = 0
potential = potential
variable = Efieldx
position_units = ${dom0Scale}
[]
[Efieldy_calc]
type = Efield
component = 1
potential = potential
variable = Efieldy
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
block = 'plasma'
position_units = ${dom0Scale}
[]
[Current_Ar]
type = ADCurrent
potential = potential_ion
density_log = Ar+
variable = Current_Ar
art_diff = false
block = 'plasma'
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_top_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Top_Electrode'
function = potential_top_bc_func
[]
[potential_bottom_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Bottom_Electrode'
function = potential_bottom_bc_func
[]
[potential_dirichlet_bottom_plate]
type = DirichletBC
variable = potential
boundary = 'Walls'
value = 0
[]
[potential_Dielectric]
type = EconomouDielectricBC
variable = potential
boundary = 'Top_Insulator Bottom_Insulator'
electrons = em
ions = Ar+
ion_potentials = potential_ion
electron_energy = mean_en
dielectric_constant = 1.859382e-11
thickness = 0.0127
emission_coeffs = 0.01
position_units = ${dom0Scale}
[]
#New Boundary conditions for electons, same as in paper
[em_physical_diffusion]
type = SakiyamaElectronDiffusionBC
variable = em
electron_energy = mean_en
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[em_Ar+_second_emissions]
type = SakiyamaSecondaryElectronBC
variable = em
potential = potential_ion
ions = Ar+
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_advection]
type = SakiyamaIonAdvectionBC
variable = Ar+
potential = potential_ion
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_diffusion]
type = SakiyamaEnergyDiffusionBC
variable = mean_en
electrons = em
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[mean_en_Ar+_second_emissions]
type = SakiyamaEnergySecondaryElectronBC
variable = mean_en
electrons = em
ions = Ar+
potential = potential_ion
Tse_equal_Te = true
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = meta_density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_top_bc_func]
type = ParsedFunction
expression = '50*sin(2*3.1415926*13.56e6*t)'
[]
[potential_bottom_bc_func]
type = ParsedFunction
expression = '-50*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = 0
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e14)/6.022e23)'
[]
[meta_density_ic_func]
type = ParsedFunction
expression = 'log((1e16)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log((3./2.) * 4) + log((1e14)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = true
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_se_coeff = 0.00
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 1.44409938
diffusivity = 6.428571e-2
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-2
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_00]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_elastic.txt'
reaction = 'em + Ar -> em + Ar'
electrons = em
[]
[reaction_0]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
mean_energy = mean_en
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
mean_energy = mean_en
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
reaction = 'em + Ar* -> em + Ar'
mean_energy = mean_en
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
reaction = 'em + Ar* -> em + em + Ar+'
mean_energy = mean_en
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 7.4e-3
dtmax = 1e-9
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
nl_rel_tol = 1e-8
#nl_abs_tol = 7.6e-5
dtmin = 1e-14
l_max_its = 20
#Time steps based on the inverse of the plasma frequency
#[TimeSteppers]
# [Postprocessor]
# type = PostprocessorDT
# postprocessor = InversePlasmaFreq
# scale = 0.1
# []
#[]
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]
(test/tests/Lymberopoulos_rf_discharge/Lymberopoulos_with_argon_metastables_2D_At100mTorr_CoarseMesh.i)
dom0Scale = 25.4e-3
[GlobalParams]
potential_units = V
use_moles = true
[]
[Mesh]
type = FileMesh
file = 'GEC_mesh_coarse.msh'
coord_type = RZ
rz_coord_axis = Y
[]
[Variables]
[em]
[]
[Ar+]
[]
[Ar*]
[]
[mean_en]
[]
[potential]
[]
[potential_ion]
[]
[]
[Kernels]
#Electron Equations (Same as in paper)
#Time Derivative term of electron
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
[]
#Advection term of electron
[em_advection]
type = EFieldAdvection
variable = em
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons
[em_diffusion]
type = CoeffDiffusion
variable = em
position_units = ${dom0Scale}
[]
#Net electron production from ionization
[em_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from step-wise ionization
[em_stepwise_ionization]
type = EEDFReactionLog
variable = em
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net electron production from metastable pooling
[em_pooling]
type = ReactionSecondOrderLog
variable = em
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Ion Equations (Same as in paper)
#Time Derivative term of the ions
[Ar+_time_deriv]
type = ElectronTimeDerivative
variable = Ar+
[]
#Advection term of ions
[Ar+_advection]
type = EFieldAdvection
variable = Ar+
potential = potential_ion
position_units = ${dom0Scale}
[]
[Ar+_diffusion]
type = CoeffDiffusion
variable = Ar+
position_units = ${dom0Scale}
[]
#Net ion production from ionization
[Ar+_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from step-wise ionization
[Ar+_stepwise_ionization]
type = EEDFReactionLog
variable = Ar+
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = 1
[]
#Net ion production from metastable pooling
[Ar+_pooling]
type = ReactionSecondOrderLog
variable = Ar+
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = 1
[]
#Argon Excited Equations (Same as in paper)
#Time Derivative term of excited Argon
[Ar*_time_deriv]
type = ElectronTimeDerivative
variable = Ar*
[]
#Diffusion term of excited Argon
[Ar*_diffusion]
type = CoeffDiffusion
variable = Ar*
position_units = ${dom0Scale}
[]
#Net excited Argon production from excitation
[Ar*_excitation]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar
mean_energy = mean_en
reaction = 'em + Ar -> em + Ar*'
coefficient = 1
[]
#Net excited Argon loss from step-wise ionization
[Ar*_stepwise_ionization]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + em + Ar+'
coefficient = -1
[]
#Net excited Argon loss from superelastic collisions
[Ar*_collisions]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar'
coefficient = -1
[]
#Net excited Argon loss from quenching to resonant
[Ar*_quenching]
type = EEDFReactionLog
variable = Ar*
electrons = em
target = Ar*
mean_energy = mean_en
reaction = 'em + Ar* -> em + Ar_r'
coefficient = -1
[]
#Net excited Argon loss from metastable pooling
[Ar*_pooling]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
coefficient = -2
_v_eq_u = true
_w_eq_u = true
[]
#Net excited Argon loss from two-body quenching
[Ar*_2B_quenching]
type = ReactionSecondOrderLog
variable = Ar*
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
coefficient = -1
_v_eq_u = true
[]
#Net excited Argon loss from three-body quenching
[Ar*_3B_quenching]
type = ReactionThirdOrderLog
variable = Ar*
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
coefficient = -1
_v_eq_u = true
[]
#Voltage Equations (Same as in paper)
#Voltage term in Poissons Eqaution
[potential_diffusion_dom0]
type = CoeffDiffusionLin
variable = potential
position_units = ${dom0Scale}
[]
#Ion term in Poissons Equation
[Ar+_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Ar+
[]
#Electron term in Poissons Equation
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
[]
#Since the paper uses electron temperature as a variable, the energy equation is in
#a different form but should be the same physics
#Time Derivative term of electron energy
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
[]
#Advection term of electron energy
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
potential = potential
position_units = ${dom0Scale}
[]
#Diffusion term of electrons energy
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
position_units = ${dom0Scale}
[]
#Joule Heating term
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
potential = potential
em = em
position_units = ${dom0Scale}
[]
#Energy loss from ionization
[Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + em + Ar+'
threshold_energy = -15.7
[]
#Energy loss from excitation
[Excitation_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar*'
threshold_energy = -11.56
[]
#Energy loss from step-wise ionization
[Stepwise_Ionization_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
threshold_energy = -4.14
[]
#Energy gain from superelastic collisions
[Collisions_Loss]
type = EEDFEnergyLog
variable = mean_en
electrons = em
target = Ar*
reaction = 'em + Ar* -> em + Ar'
threshold_energy = 11.56
[]
# Energy loss from elastic collisions
[Elastic_loss]
type = EEDFElasticLog
variable = mean_en
electrons = em
target = Ar
reaction = 'em + Ar -> em + Ar'
[]
#Effective potential for the Ions
[Ion_potential_time_deriv]
type = TimeDerivative
variable = potential_ion
[]
[Ion_potential_reaction]
type = ScaledReaction
variable = potential_ion
collision_freq = 1283370.875
[]
[Ion_potential_coupled_force]
type = CoupledForce
variable = potential_ion
v = potential
coef = 1283370.875
[]
[]
[AuxVariables]
[emDeBug]
[]
[Ar+_DeBug]
[]
[Ar*_DeBug]
[]
[mean_enDeBug]
[]
[potential_DeBug]
[]
[Te]
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[y]
order = CONSTANT
family = MONOMIAL
[]
[y_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar+_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar*_lin]
order = CONSTANT
family = MONOMIAL
[]
[Ar]
[]
[Efieldx]
order = CONSTANT
family = MONOMIAL
[]
[Efieldy]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[Current_Ar]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[emRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[exRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[swRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[deexRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[quRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[poolRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[TwoBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[ThreeBRate]
order = CONSTANT
family = MONOMIAL
block = 'plasma'
[]
[]
[AuxKernels]
#[emDeBug]
# type = DebugResidualAux
# variable = emDeBug
# debug_variable = em
#[]
#[Ar+_DeBug]
# type = DebugResidualAux
# variable = Ar+_DeBug
# debug_variable = Ar+
#[]
#[mean_enDeBug]
# type = DebugResidualAux
# variable = mean_enDeBug
# debug_variable = mean_en
#[]
#[Ar*_DeBug]
# type = DebugResidualAux
# variable = Ar*_DeBug
# debug_variable = Ar*
#[]
#[Potential_DeBug]
# type = DebugResidualAux
# variable = potential_DeBug
# debug_variable = potential
#[]
[emRate]
type = ProcRateForRateCoeff
variable = emRate
v = em
w = Ar
reaction = 'em + Ar -> em + em + Ar+'
[]
[exRate]
type = ProcRateForRateCoeff
variable = exRate
v = em
w = Ar*
reaction = 'em + Ar -> em + Ar*'
[]
[swRate]
type = ProcRateForRateCoeff
variable = swRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + em + Ar+'
[]
[deexRate]
type = ProcRateForRateCoeff
variable = deexRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar'
[]
[quRate]
type = ProcRateForRateCoeff
variable = quRate
v = em
w = Ar*
reaction = 'em + Ar* -> em + Ar_r'
[]
[poolRate]
type = ProcRateForRateCoeff
variable = poolRate
v = Ar*
w = Ar*
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
[]
[TwoBRate]
type = ProcRateForRateCoeff
variable = TwoBRate
v = Ar*
w = Ar
reaction = 'Ar* + Ar -> Ar + Ar'
[]
[ThreeBRate]
type = ProcRateForRateCoeffThreeBody
variable = ThreeBRate
v = Ar*
w = Ar
x = Ar
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
[]
[Te]
type = ElectronTemperature
variable = Te
electron_density = em
mean_en = mean_en
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
[]
[y_g]
type = Position
variable = y
position_units = ${dom0Scale}
[]
[y_ng]
type = Position
variable = y_node
position_units = ${dom0Scale}
[]
[em_lin]
type = DensityMoles
variable = em_lin
density_log = em
[]
[Ar+_lin]
type = DensityMoles
variable = Ar+_lin
density_log = Ar+
[]
[Ar*_lin]
type = DensityMoles
variable = Ar*_lin
density_log = Ar*
[]
[Ar_val]
type = ConstantAux
variable = Ar
# value = 3.22e2
value = -5.231208
execute_on = INITIAL
[]
[Efieldx_calc]
type = Efield
component = 0
potential = potential
variable = Efieldx
position_units = ${dom0Scale}
[]
[Efieldy_calc]
type = Efield
component = 1
potential = potential
variable = Efieldy
position_units = ${dom0Scale}
[]
[Current_em]
type = ADCurrent
potential = potential
density_log = em
variable = Current_em
art_diff = false
block = 'plasma'
position_units = ${dom0Scale}
[]
[Current_Ar]
type = ADCurrent
potential = potential_ion
density_log = Ar+
variable = Current_Ar
art_diff = false
block = 'plasma'
position_units = ${dom0Scale}
[]
[]
[BCs]
#Voltage Boundary Condition, same as in paper
[potential_top_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Top_Electrode'
function = potential_top_bc_func
preset = false
[]
[potential_bottom_plate]
type = FunctionDirichletBC
variable = potential
boundary = 'Bottom_Electrode'
function = potential_bottom_bc_func
preset = false
[]
[potential_dirichlet_bottom_plate]
type = DirichletBC
variable = potential
boundary = 'Walls'
value = 0
preset = false
[]
[potential_Dielectric]
type = EconomouDielectricBC
variable = potential
boundary = 'Top_Insulator Bottom_Insulator'
electrons = em
ions = Ar+
ion_potentials = potential_ion
electron_energy = mean_en
dielectric_constant = 1.859382e-11
thickness = 0.0127
emission_coeffs = 0.01
position_units = ${dom0Scale}
[]
#New Boundary conditions for electons, same as in paper
[em_physical_diffusion]
type = SakiyamaElectronDiffusionBC
variable = em
electron_energy = mean_en
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[em_Ar+_second_emissions]
type = SakiyamaSecondaryElectronBC
variable = em
potential = potential_ion
ions = Ar+
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
[Ar+_physical_advection]
type = SakiyamaIonAdvectionBC
variable = Ar+
potential = potential_ion
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
#New Boundary conditions for ions, should be the same as in paper
#(except the metastables are not set to zero, since Zapdos uses log form)
[Ar*_physical_diffusion]
type = LogDensityDirichletBC
variable = Ar*
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
value = 100
[]
#New Boundary conditions for mean energy, should be the same as in paper
[mean_en_physical_diffusion]
type = SakiyamaEnergyDiffusionBC
variable = mean_en
electrons = em
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[mean_en_Ar+_second_emissions]
type = SakiyamaEnergySecondaryElectronBC
variable = mean_en
electrons = em
ions = Ar+
potential = potential_ion
Tse_equal_Te = true
emission_coeffs = 0.01
boundary = 'Top_Electrode Bottom_Electrode Top_Insulator Bottom_Insulator Walls'
position_units = ${dom0Scale}
[]
[]
[ICs]
[em_ic]
type = FunctionIC
variable = em
function = density_ic_func
[]
[Ar+_ic]
type = FunctionIC
variable = Ar+
function = density_ic_func
[]
[Ar*_ic]
type = FunctionIC
variable = Ar*
function = meta_density_ic_func
[]
[mean_en_ic]
type = FunctionIC
variable = mean_en
function = energy_density_ic_func
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_top_bc_func]
type = ParsedFunction
expression = '50*sin(2*3.1415926*13.56e6*t)'
[]
[potential_bottom_bc_func]
type = ParsedFunction
expression = '-50*sin(2*3.1415926*13.56e6*t)'
[]
[potential_ic_func]
type = ParsedFunction
expression = 0
[]
[density_ic_func]
type = ParsedFunction
expression = 'log((1e14)/6.022e23)'
[]
[meta_density_ic_func]
type = ParsedFunction
expression = 'log((1e16)/6.022e23)'
[]
[energy_density_ic_func]
type = ParsedFunction
expression = 'log((3./2.) * 4) + log((1e14)/6.022e23)'
[]
[]
[Materials]
[GasBasics]
type = GasElectronMoments
interp_trans_coeffs = true
interp_elastic_coeff = false
ramp_trans_coeffs = false
user_p_gas = 133.322
em = em
potential = potential
mean_en = mean_en
user_se_coeff = 0.00
property_tables_file = Argon_reactions_paper_RateCoefficients/electron_moments.txt
[]
[gas_species_0]
type = ADHeavySpecies
heavy_species_name = Ar+
heavy_species_mass = 6.64e-26
heavy_species_charge = 1.0
mobility = 1.44409938
diffusivity = 6.428571e-2
[]
[gas_species_1]
type = ADHeavySpecies
heavy_species_name = Ar*
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
diffusivity = 7.515528e-2
[]
[gas_species_2]
type = ADHeavySpecies
heavy_species_name = Ar
heavy_species_mass = 6.64e-26
heavy_species_charge = 0.0
[]
[reaction_00]
type = ZapdosEEDFRateConstant
mean_energy = mean_en
property_file = 'Argon_reactions_paper_RateCoefficients/ar_elastic.txt'
reaction = 'em + Ar -> em + Ar'
electrons = em
[]
[reaction_0]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excitation.txt'
reaction = 'em + Ar -> em + Ar*'
mean_energy = mean_en
electrons = em
[]
[reaction_1]
type = ZapdosEEDFRateConstant
property_file = 'Argon_reactions_paper_RateCoefficients/ar_ionization.txt'
reaction = 'em + Ar -> em + em + Ar+'
mean_energy = mean_en
electrons = em
[]
[reaction_2]
type = ZapdosEEDFRateConstant
reaction = 'em + Ar* -> em + Ar'
property_file = 'Argon_reactions_paper_RateCoefficients/ar_deexcitation.txt'
mean_energy = mean_en
electrons = em
[]
[reaction_3]
type = ZapdosEEDFRateConstant
reaction = 'em + Ar* -> em + em + Ar+'
property_file = 'Argon_reactions_paper_RateCoefficients/ar_excited_ionization.txt'
mean_energy = mean_en
electrons = em
[]
[reaction_4]
type = GenericRateConstant
reaction = 'em + Ar* -> em + Ar_r'
#reaction_rate_value = 2e-13
reaction_rate_value = 1.2044e11
[]
[reaction_5]
type = GenericRateConstant
reaction = 'Ar* + Ar* -> Ar+ + Ar + em'
#reaction_rate_value = 6.2e-16
reaction_rate_value = 373364000
[]
[reaction_6]
type = GenericRateConstant
reaction = 'Ar* + Ar -> Ar + Ar'
#reaction_rate_value = 3e-21
reaction_rate_value = 1806.6
[]
[reaction_7]
type = GenericRateConstant
reaction = 'Ar* + Ar + Ar -> Ar_2 + Ar'
#reaction_rate_value = 1.1e-42
reaction_rate_value = 398909.324
[]
[]
#New postprocessor that calculates the inverse of the plasma frequency
[Postprocessors]
[InversePlasmaFreq]
type = PlasmaFrequencyInverse
variable = em
use_moles = true
execute_on = 'INITIAL TIMESTEP_BEGIN'
[]
[]
[Preconditioning]
active = 'smp'
[smp]
type = SMP
full = true
[]
[fdp]
type = FDP
full = true
[]
[]
[Executioner]
type = Transient
#end_time = 7.4e-3
end_time = 1e-7
dtmax = 1e-9
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 fgmres 1e-3'
nl_rel_tol = 1e-12
#nl_abs_tol = 7.6e-5
dtmin = 1e-14
l_max_its = 20
#Time steps based on the inverse of the plasma frequency
#[TimeSteppers]
# [Postprocessor]
# type = PostprocessorDT
# postprocessor = InversePlasmaFreq
# scale = 0.1
# []
#[]
[]
[Outputs]
perf_graph = true
[out]
type = Exodus
[]
[]