SakiyamaSecondaryElectronWithEffEfieldBC

Kinetic secondary electron boundary condition (Based on Sakiyama and Graves (2006))

Overview

SakiyamaSecondaryElectronWithEffEfieldBC accounts for the electron density of secondary electrons induced by an ion flux outflow boundary condition. The effective electric field is supplied as scalar componets of the field.

The ion induced secondary electron density outflow is defined as

where

  • is the flux normal to the boundary,

  • is the normal vector of the boundary,

  • is the mobility coefficient,

  • is the ion density,

  • is the secondary electron coefficient,

  • is the electric field (supplied as scalar components), and

  • is defined such that the outflow is only non-zero when the drift velocity is directed towards the wall and zero otherwise.

When converting the density to log form and applying a scaling factor of the mesh, the strong form for SakiyamaSecondaryElectronWithEffEfieldBC is defined as

Where is the molar density of the species in log form and is the scaling factor of the mesh.

Example Input File Syntax

[BCs]
  [em_Ar+_second_emissions_left]
    type = SakiyamaSecondaryElectronWithEffEfieldBC
    variable = em
    Ex = Ex
    Ey = Ey
    ions = ion
    emission_coeffs = 'users_gamma'
    boundary = 3
    position_units = 1.0
  []
[]
(test/tests/mms/bcs/2D_ElectronBC.i)

Input Parameters

  • ExThe EField in the x-direction

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The EField in the x-direction

  • boundaryThe list of boundary IDs from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundary IDs from the mesh where this object applies

  • ionsA list of ion densities in log form

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:A list of ion densities in log form

  • position_unitsUnits of position.

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Units of position.

  • variableThe name of the variable that this residual object operates on

    C++ Type:NonlinearVariableName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the variable that this residual object operates on

Required Parameters

  • EyThe EField in the y-direction

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The EField in the y-direction

  • EzThe EField in the z-direction

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The EField in the z-direction

  • displacementsThe displacements

    C++ Type:std::vector<VariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The displacements

  • emission_coeffsThe secondary electron emission coefficient for each ion provided in `ions`

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:The secondary electron emission coefficient for each ion provided in `ions`

Optional Parameters

  • absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution

  • extra_matrix_tagsThe extra tags for the matrices this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the matrices this Kernel should fill

  • extra_vector_tagsThe extra tags for the vectors this Kernel should fill

    C++ Type:std::vector<TagName>

    Controllable:No

    Description:The extra tags for the vectors this Kernel should fill

  • matrix_tagssystemThe tag for the matrices this Kernel should fill

    Default:system

    C++ Type:MultiMooseEnum

    Options:nontime, system

    Controllable:No

    Description:The tag for the matrices this Kernel should fill

  • vector_tagsnontimeThe tag for the vectors this Kernel should fill

    Default:nontime

    C++ Type:MultiMooseEnum

    Options:nontime, time

    Controllable:No

    Description:The tag for the vectors this Kernel should fill

Contribution To Tagged Field Data Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • diag_save_inThe name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of auxiliary variables to save this BC's diagonal jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • save_inThe name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

    C++ Type:std::vector<AuxVariableName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of auxiliary variables to save this BC's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • skip_execution_outside_variable_domainFalseWhether to skip execution of this boundary condition when the variable it applies to is not defined on the boundary. This can facilitate setups with moving variable domains and fixed boundaries. Note that the FEProblem boundary-restricted integrity checks will also need to be turned off if using this option

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether to skip execution of this boundary condition when the variable it applies to is not defined on the boundary. This can facilitate setups with moving variable domains and fixed boundaries. Note that the FEProblem boundary-restricted integrity checks will also need to be turned off if using this option

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Material Property Retrieval Parameters

Input Files

References

  1. Y Sakiyama and David B Graves. Corona-glow transition in the atmospheric pressure rf-excited plasma needle. Journal of Physics D: Applied Physics, 39(16):3644, 2006. doi:10.1088/0022-3727/39/16/018.[BibTeX]