- epsilonSignificant distance in the function below which points are considered removable noise
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Significant distance in the function below which points are considered removable noise
CoarsenedPiecewiseLinear
Perform a point reduction of the tabulated data upon initialization, then evaluate using a linear interpolation.
Description
The CoarsenedPiecewiseLinear
performs preprocessing and linear interpolation on an x/y data set. The object acts like PiecewiseLinear
except that it reduces the number of function point at the start of the simulation. It uses the Ramer-Douglas-Peucker algorithm for data reduction.
Example Input Syntax
[Functions]
[./ic_function]
type = PiecewiseLinear
data_file = piecewise_linear_columns.csv #Will generate error because data is expected in rows
scale_factor = 1.0
[../]
[]
(moose/test/tests/misc/check_error/function_file_test1.i)Input Parameters
- axisThe axis used (x, y, or z) if this is to be a function of position
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:The axis used (x, y, or z) if this is to be a function of position
- scale_factor1Scale factor to be applied to the ordinate values
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Scale factor to be applied to the ordinate values
- x_scale1Scaling factor to apply to the function nodes for the purpose of computing distances in the Douglas-Peucker point reduction algorithm. This permits shifting the weight between x and y-direction distances.
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Scaling factor to apply to the function nodes for the purpose of computing distances in the Douglas-Peucker point reduction algorithm. This permits shifting the weight between x and y-direction distances.
- y_scale1Scaling factor to apply to the function nodes for the purpose of computing distances in the Douglas-Peucker point reduction algorithm. This permits shifting the weight between x and y-direction distances.
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Scaling factor to apply to the function nodes for the purpose of computing distances in the Douglas-Peucker point reduction algorithm. This permits shifting the weight between x and y-direction distances.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Set the enabled status of the MooseObject.
Advanced Parameters
- data_fileFile holding CSV data
C++ Type:FileName
Unit:(no unit assumed)
Controllable:No
Description:File holding CSV data
- formatrowsFormat of csv data file that is in either in columns or rows
Default:rows
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Format of csv data file that is in either in columns or rows
- x_index_in_file0The abscissa index in the data file
Default:0
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The abscissa index in the data file
- x_titleThe title of the column/row containing the x data in the data file
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:The title of the column/row containing the x data in the data file
- xy_in_file_onlyTrueIf the data file only contains abscissa and ordinate data
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:If the data file only contains abscissa and ordinate data
- y_index_in_file1The ordinate index in the data file
Default:1
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The ordinate index in the data file
- y_titleThe title of the column/row containing the y data in the data file
C++ Type:std::string
Unit:(no unit assumed)
Controllable:No
Description:The title of the column/row containing the y data in the data file
Data From Csv File Parameters
- json_uoJSONFileReader holding the data
C++ Type:UserObjectName
Unit:(no unit assumed)
Controllable:No
Description:JSONFileReader holding the data
- x_keysOrdered vector of keys in the JSON tree to obtain the abscissa
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Ordered vector of keys in the JSON tree to obtain the abscissa
- y_keysOrdered vector of keys in the JSON tree to obtain the ordinate
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Ordered vector of keys in the JSON tree to obtain the ordinate
Data From Json Parameters
- xThe abscissa values
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The abscissa values
- xy_dataAll function data, supplied in abscissa, ordinate pairs
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:All function data, supplied in abscissa, ordinate pairs
- yThe ordinate values
C++ Type:std::vector<double>
Unit:(no unit assumed)
Controllable:No
Description:The ordinate values