VectorMagnitudeFunctorMaterial

This class takes up to three scalar-valued functors corresponding to vector components or a single vector functor and computes the Euclidean norm.

Overview

This class either takes 1-3 scalar-valued (e.g. Real, ADReal) functors or a single vector functor and creates a functor that returns the Euclidean norm of the input. For creating a Real-returning functor that takes in Real input, use the VectorMagnitudeFunctorMaterial type in the input file. For a ADReal-returning functor that takes in ADReal input, use ADVectorMagnitudeFunctorMaterial. If using component inputs and the y or z-component functor parameters are not provided, then they are defaulted to 0.

Example Input File Syntax

Scalar-component inputs

In this example, ADVectorMagnitudeFunctorMaterial is used to define the vector magnitude of the vector component inputs u and v which happen to be nonlinear variables in this case. u varies from 0 to 1 from bottom to top and v varies from 0 to 1 from left to right, such that the magnitude field is symmetric about the line y=x with the field value increasing moving to the top-right.

[Materials]
  [functor]
    type = ADVectorMagnitudeFunctorMaterial
    x_functor = u
    y_functor = v
    vector_magnitude_name = mat_mag
  []
[]
(moose/test/tests/materials/functor_properties/vector-magnitude/test.i)

Vector input

In this example, the functor provided by ADVectorMagnitudeFunctorMaterial (which we name mat_mag to avoid collision with the auxiliary variable mag) computes the norm of the vector functor u, which is a nonlinear variable in this simulation.

[Materials]
  [functor]
    type = ADVectorMagnitudeFunctorMaterial
    vector_functor = u
    vector_magnitude_name = mat_mag
  []
[]
(moose/test/tests/materials/functor_properties/vector-magnitude/vector-test.i)

Input Parameters

  • vector_magnitude_nameThe name of the vector magnitude functor that we are creating. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of the vector magnitude functor that we are creating. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

Required Parameters

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Unit:(no unit assumed)

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Unit:(no unit assumed)

    Options:NONE, ELEMENT, SUBDOMAIN

    Controllable:No

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

  • execute_onALWAYSThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.

    Default:ALWAYS

    C++ Type:ExecFlagEnum

    Unit:(no unit assumed)

    Options:NONE, INITIAL, LINEAR, NONLINEAR_CONVERGENCE, NONLINEAR, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, FINAL, CUSTOM, ALWAYS

    Controllable:No

    Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

  • vector_functorThe name of a vector functor that we will take the magnitude of. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The name of a vector functor that we will take the magnitude of. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • x_functorThe functor corresponding to the x component. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The functor corresponding to the x component. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • y_functor0The functor corresponding to the y component. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:0

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The functor corresponding to the y component. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

  • z_functor0The functor corresponding to the z component. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

    Default:0

    C++ Type:MooseFunctorName

    Unit:(no unit assumed)

    Controllable:No

    Description:The functor corresponding to the z component. A functor is any of the following: a variable, a functor material property, a function, a post-processor, or a number.

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Unit:(no unit assumed)

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Unit:(no unit assumed)

    Controllable:No

    Description:The seed for the master random number generator

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Unit:(no unit assumed)

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Unit:(no unit assumed)

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters