- neighbor_varThe variable on the other side of the interface.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The variable on the other side of the interface.
- variableThe name of the variable that this residual object operates on
C++ Type:NonlinearVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this residual object operates on
PotentialSurfaceCharge
Enforces the dielectric boundary condition on a potential variable at an interface, where the surface charge is provided as an ADMaterialProperty.
Overview
PotentialSurfaceCharge
enforces the dielectric boundary condition at an interface by equating the difference in the electric field at an interface to a surface charge. To supply the surface charge, the ADSurfaceCharge object is often used.
The dielectric boundary condition is defined as
Where:
Subscript is the the primary side of the interface,
Subscript is the the neighboring side of the interface,
is the normal vector of the interface,
is the electric field, and
is the surface charge.
PotentialSurfaceCharge
assumes the electrostatic approximation (i.e., ). When converting to the electrostatic potential and applying a scaling factor of the mesh, PotentialSurfaceCharge
is defined as
Where:
is the electrostatic potential, and
is the scaling factor of the mesh.
Example Input File Syntax
[InterfaceKernels<<<{"href": "../../syntax/InterfaceKernels/index.html"}>>>]
[potential_right]
type = PotentialSurfaceCharge<<<{"description": "Enforces the dielectric boundary condition on a potential variable at an interface, where the surface charge is provided as an ADMaterialProperty.", "href": "PotentialSurfaceCharge.html"}>>>
neighbor_var<<<{"description": "The variable on the other side of the interface."}>>> = potential_dom1
variable<<<{"description": "The name of the variable that this residual object operates on"}>>> = potential_dom0
position_units<<<{"description": "The units of position."}>>> = ${dom0Scale}
neighbor_position_units<<<{"description": "The units of position."}>>> = ${dom1Scale}
boundary<<<{"description": "The list of boundaries (ids or names) from the mesh where this object applies"}>>> = plasma_right
[]
[]
(test/tests/surface_charge/dbd_test.i)Input Parameters
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- matrix_onlyFalseWhether this object is only doing assembly to matrices (no vectors)
Default:False
C++ Type:bool
Controllable:No
Description:Whether this object is only doing assembly to matrices (no vectors)
- neighbor_position_units1The units of position.
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The units of position.
- position_units1The units of position.
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The units of position.
Optional Parameters
- absolute_value_vector_tagsThe tags for the vectors this residual object should fill with the absolute value of the residual contribution
C++ Type:std::vector<TagName>
Controllable:No
Description:The tags for the vectors this residual object should fill with the absolute value of the residual contribution
- extra_matrix_tagsThe extra tags for the matrices this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the matrices this Kernel should fill
- extra_vector_tagsThe extra tags for the vectors this Kernel should fill
C++ Type:std::vector<TagName>
Controllable:No
Description:The extra tags for the vectors this Kernel should fill
- matrix_tagssystemThe tag for the matrices this Kernel should fill
Default:system
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the matrices this Kernel should fill
- vector_tagsnontimeThe tag for the vectors this Kernel should fill
Default:nontime
C++ Type:MultiMooseEnum
Controllable:No
Description:The tag for the vectors this Kernel should fill
Contribution To Tagged Field Data Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- diag_save_inThe name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this Kernel's diagonal Jacobian contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- diag_save_in_var_sideThis parameter must exist if diag_save_in variables are specified and must have the same length as diag_save_in. This vector specifies whether the corresponding aux_var should save-in jacobian contributions from the primary ('p') or secondary side ('s').
C++ Type:MultiMooseEnum
Controllable:No
Description:This parameter must exist if diag_save_in variables are specified and must have the same length as diag_save_in. This vector specifies whether the corresponding aux_var should save-in jacobian contributions from the primary ('p') or secondary side ('s').
- save_inThe name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
C++ Type:std::vector<AuxVariableName>
Unit:(no unit assumed)
Controllable:No
Description:The name of auxiliary variables to save this Kernel's residual contributions to. Everything about that variable must match everything about this variable (the type, what blocks it's on, etc.)
- save_in_var_sideThis parameter must exist if save_in variables are specified and must have the same length as save_in. This vector specifies whether the corresponding aux_var should save-in residual contributions from the primary ('p') or secondary side ('s').
C++ Type:MultiMooseEnum
Controllable:No
Description:This parameter must exist if save_in variables are specified and must have the same length as save_in. This vector specifies whether the corresponding aux_var should save-in residual contributions from the primary ('p') or secondary side ('s').
Residual And Jacobian Debug Output Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.