- interp_elastic_coeffFalseWhether to interpolate the elastic collision townsend coefficient as a function of the mean energy. If false, coeffs are constant.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to interpolate the elastic collision townsend coefficient as a function of the mean energy. If false, coeffs are constant.
- interp_trans_coeffsFalseWhether to interpolate transport coefficients as a function of the mean energy. If false, coeffs are constant.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to interpolate transport coefficients as a function of the mean energy. If false, coeffs are constant.
- potential_unitsThe potential units.
C++ Type:std::string
Controllable:No
Description:The potential units.
- property_tables_fileThe file containing interpolation tables for material properties.
C++ Type:FileName
Controllable:No
Description:The file containing interpolation tables for material properties.
- ramp_trans_coeffsFalseWhether to ramp the non-linearity of coming from the electron energy dependence of the transport coefficients.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to ramp the non-linearity of coming from the electron energy dependence of the transport coefficients.
- use_molesFalseWhether to use units of moles as opposed to # of molecules.
Default:False
C++ Type:bool
Controllable:No
Description:Whether to use units of moles as opposed to # of molecules.
Gas
The Gas has not been documented. The content listed below should be used as a starting point for documenting the class, which includes the typical automatic documentation associated with a MooseObject; however, what is contained is ultimately determined by what is necessary to make the documentation clear for users.
Material properties of electron and ions for argon gas(Defines reaction properties with Townsend coefficients)
Overview
Example Input File Syntax
Input Parameters
- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
- boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
- computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Controllable:No
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
- constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Options:NONE, ELEMENT, SUBDOMAIN
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
- declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
- emSpecies concentration needed to calculate the poisson source
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Species concentration needed to calculate the poisson source
- ipThe ion density.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The ion density.
- mean_enThe electron mean energy in log form.
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:The electron mean energy in log form.
- user_Richardson_coefficient1.20173e+06The Richardson coefficient.
Default:1.20173e+06
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The Richardson coefficient.
- user_T_gas300The gas temperature in Kelvin.
Default:300
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The gas temperature in Kelvin.
- user_cathode_temperature300The cathode temperature in Kelvin.
Default:300
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The cathode temperature in Kelvin.
- user_field_enhancement1The field enhancement factor.
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The field enhancement factor.
- user_p_gas101000The gas pressure in Pascals.
Default:101000
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The gas pressure in Pascals.
- user_relative_permittivity1Multiplies the permittivity of free space.
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Multiplies the permittivity of free space.
- user_se_coeff0.15The secondary electron emission coefficient.
Default:0.15
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The secondary electron emission coefficient.
- user_work_function5The work function.
Default:5
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:The work function.
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
- seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
- outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
Outputs Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Material Property Retrieval Parameters
Input Files
- (test/tests/DriftDiffusionAction/mean_en_no_actions.i)
- (test/tests/Schottky_emission/Example4/Input.i)
- (test/tests/reflections/Schottky_300_V_5_um/Input.i)
- (test/tests/Schottky_emission/Example4/Jac.i)
- (test/tests/1d_dc/NonlocalPotentialBCWithSchottky.i)
- (test/tests/Schottky_emission/Example2/Input.i)
- (test/tests/DriftDiffusionAction/mean_en_actions.i)
- (test/tests/reflections/low_initial/Input.i)
- (test/tests/1d_dc/mean_en.i)
- (test/tests/reflections/base/Input.i)
- (test/tests/reflections/Schottky/Input.i)
- (test/tests/Schottky_emission/Example1/Input.i)
- (test/tests/reflections/high_initial/Input.i)
- (test/tests/Schottky_emission/Example3/Input.i)
- (test/tests/reflections/Schottky_400_V_10_um/Input.i)
- (test/tests/1d_dc/densities_mean_en.i)
- (test/tests/Schottky_emission/PaschenLaw/Input.i)
- (test/tests/field_emission/field_emission.i)
(test/tests/DriftDiffusionAction/mean_en_no_actions.i)
#This is the input file that supplied the gold output file.
#It is the same as the input file in tests/1d_dc/mean_en.i,
#execpt some of the Aux Variables are renamed for the Action test
dom0Scale = 1e-3
dom1Scale = 1e-7
[GlobalParams]
offset = 20
# offset = 0
potential_units = kV
use_moles = true
# potential_units = V
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'liquidNew.msh'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
input = file
[]
[interface_again]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'master1_interface'
input = interface
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = interface_again
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
ksp_norm = none
[]
[]
[Executioner]
type = Transient
end_time = 1e-1
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
# petsc_options = '-snes_test_display'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
# petsc_options_iname = '-pc_type -sub_pc_type'
# petsc_options_value = 'asm lu'
# petsc_options_iname = '-snes_type'
# petsc_options_value = 'test'
nl_rel_tol = 1e-4
nl_abs_tol = 7.6e-5
dtmin = 1e-12
l_max_its = 20
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-11
# dt = 1.1
growth_factor = 1.2
optimal_iterations = 15
[]
[]
[]
[Outputs]
file_base = out
perf_graph = true
[out]
type = Exodus
execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e6
e = 1.6e-19
# electrode_area = 1.1
# ballast_resist = 1.1
# e = 1.1
[]
[]
[Kernels]
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
variable = em
mean_en = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
block = 0
[]
# [em_advection_stabilization]
# type = EFieldArtDiff
# variable = em
# block = 0
# []
[emliq_time_deriv]
type = ElectronTimeDerivative
variable = emliq
block = 1
[]
[emliq_advection]
type = EFieldAdvection
variable = emliq
block = 1
position_units = ${dom1Scale}
[]
[emliq_diffusion]
type = CoeffDiffusion
variable = emliq
block = 1
position_units = ${dom1Scale}
[]
[emliq_reactant_first_order_rxn]
type = ReactantFirstOrderRxn
variable = emliq
block = 1
[]
[emliq_water_bi_sink]
type = ReactantAARxn
variable = emliq
block = 1
[]
[emliq_log_stabilization]
type = LogStabilizationMoles
variable = emliq
block = 1
[]
# [emliq_advection_stabilization]
# type = EFieldArtDiff
# variable = emliq
# block = 1
# []
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom2]
type = CoeffDiffusionLin
variable = potential
block = 1
position_units = ${dom1Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[emliq_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = emliq
block = 1
[]
[OHm_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = OHm
block = 1
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
block = 0
[]
# [Arp_advection_stabilization]
# type = EFieldArtDiff
# variable = Arp
# block = 0
# []
[OHm_time_deriv]
type = ElectronTimeDerivative
variable = OHm
block = 1
[]
[OHm_advection]
type = EFieldAdvection
variable = OHm
block = 1
position_units = ${dom1Scale}
[]
[OHm_diffusion]
type = CoeffDiffusion
variable = OHm
block = 1
position_units = ${dom1Scale}
[]
[OHm_log_stabilization]
type = LogStabilizationMoles
variable = OHm
block = 1
[]
# [OHm_advection_stabilization]
# type = EFieldArtDiff
# variable = OHm
# block = 1
# []
[OHm_product_first_order_rxn]
type = ProductFirstOrderRxn
variable = OHm
v = emliq
block = 1
[]
[OHm_product_aabb_rxn]
type = ProductAABBRxn
variable = OHm
v = emliq
block = 1
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 15.0
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[emliq]
block = 1
# scaling = 1e-5
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
# scaling = 1e-1
[]
[OHm]
block = 1
# scaling = 1e-5
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
#[x]
# order = CONSTANT
# family = MONOMIAL
#[]
[position0]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[position1]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[rholiq]
block = 1
order = CONSTANT
family = MONOMIAL
[]
#[em_lin]
# order = CONSTANT
# family = MONOMIAL
# block = 0
#[]
[em_density]
order = CONSTANT
family = MONOMIAL
block = 0
[]
#[emliq_lin]
# order = CONSTANT
# family = MONOMIAL
# block = 1
#[]
[emliq_density]
order = CONSTANT
family = MONOMIAL
block = 1
[]
#[Arp_lin]
# order = CONSTANT
# family = MONOMIAL
# block = 0
#[]
[Arp_density]
order = CONSTANT
family = MONOMIAL
block = 0
[]
#[OHm_lin]
# block = 1
# order = CONSTANT
# family = MONOMIAL
#[]
[OHm_density]
block = 1
order = CONSTANT
family = MONOMIAL
[]
#[Efield]
# order = CONSTANT
# family = MONOMIAL
#[]
[EFieldx0]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldx1]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_OHm]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_liq_current]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[tot_flux_OHm]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[DiffusiveFlux_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = position0
position_units = ${dom0Scale}
block = 0
[]
[x_l]
type = Position
variable = position1
position_units = ${dom1Scale}
block = 1
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[x_nl]
type = Position
variable = x_node
position_units = ${dom1Scale}
block = 1
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_density Arp_density'
expression = 'Arp_density - em_density'
execute_on = 'timestep_end'
block = 0
[]
[rholiq]
type = ParsedAux
variable = rholiq
coupled_variables = 'emliq_density OHm_density'
expression = '-emliq_density - OHm_density'
execute_on = 'timestep_end'
block = 1
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[tot_liq_current]
type = ParsedAux
variable = tot_liq_current
coupled_variables = 'Current_emliq Current_OHm' # Current_H3Op Current_OHm'
expression = 'Current_emliq + Current_OHm' # + Current_H3Op + Current_OHm'
execute_on = 'timestep_end'
block = 1
[]
[em_lin]
type = DensityMoles
variable = em_density
density_log = em
block = 0
[]
[emliq_lin]
type = DensityMoles
variable = emliq_density
density_log = emliq
block = 1
[]
[Arp_lin]
type = DensityMoles
variable = Arp_density
density_log = Arp
block = 0
[]
[OHm_lin]
type = DensityMoles
variable = OHm_density
density_log = OHm
block = 1
[]
[Efield_g]
type = Efield
component = 0
variable = EFieldx0
position_units = ${dom0Scale}
block = 0
[]
[Efield_l]
type = Efield
component = 0
variable = EFieldx1
position_units = ${dom1Scale}
block = 1
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_emliq]
type = ADCurrent
density_log = emliq
variable = Current_emliq
art_diff = false
block = 1
position_units = ${dom1Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_OHm]
block = 1
type = ADCurrent
density_log = OHm
variable = Current_OHm
art_diff = false
position_units = ${dom1Scale}
[]
[tot_flux_OHm]
block = 1
type = ADTotalFlux
density_log = OHm
variable = tot_flux_OHm
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_emliq]
type = ADEFieldAdvAux
density_log = emliq
variable = EFieldAdvAux_emliq
block = 1
position_units = ${dom1Scale}
[]
[DiffusiveFlux_emliq]
type = ADDiffusiveFlux
density_log = emliq
variable = DiffusiveFlux_emliq
block = 1
position_units = ${dom1Scale}
[]
[]
[InterfaceKernels]
[em_advection]
type = InterfaceAdvection
neighbor_var = em
variable = emliq
boundary = master1_interface
position_units = ${dom1Scale}
neighbor_position_units = ${dom0Scale}
[]
[em_diffusion]
type = InterfaceLogDiffusionElectrons
neighbor_var = em
variable = emliq
boundary = master1_interface
position_units = ${dom1Scale}
neighbor_position_units = ${dom0Scale}
[]
[]
[BCs]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'master0_interface'
electrons = em
r = 0.99
position_units = ${dom0Scale}
[]
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[secondary_energy_left]
type = SecondaryElectronEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
ions = 'Arp'
r = 0
emission_coeffs = 0.05
secondary_electron_energy = 3
position_units = ${dom0Scale}
[]
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.05
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
[em_physical_right]
type = HagelaarElectronBC
variable = em
boundary = 'master0_interface'
electron_energy = mean_en
r = 0.99
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'master0_interface'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'master0_interface'
r = 0
position_units = ${dom0Scale}
[]
[em_physical_left]
type = HagelaarElectronBC
variable = em
boundary = 'left'
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
[sec_electrons_left]
type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.05
[]
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[emliq_right]
type = DCIonBC
variable = emliq
boundary = right
position_units = ${dom1Scale}
[]
[OHm_physical]
type = DCIonBC
variable = OHm
boundary = 'right'
position_units = ${dom1Scale}
[]
[]
[ICs]
[em_ic]
type = ConstantIC
variable = em
value = -21
block = 0
[]
[emliq_ic]
type = ConstantIC
variable = emliq
value = -21
block = 1
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -21
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -20
block = 0
[]
[OHm_ic]
type = ConstantIC
variable = OHm
value = -15.6
block = 1
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
# expression = '1.25*tanh(1e6*t)'
expression = -1.25
[]
[potential_ic_func]
type = ParsedFunction
expression = '-1.25 * (1.0001e-3 - x)'
[]
[]
[Materials]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.05
block = 0
property_tables_file = td_argon_mean_en.txt
[]
[gas_field_solver]
type = FieldSolverMaterial
potential = potential
block = 0
[]
[water_block]
type = Water
block = 1
[]
[water_field_solver]
type = FieldSolverMaterial
potential = potential
block = 1
[]
[]
(test/tests/Schottky_emission/Example4/Input.i)
dom0Scale = 1
dom0Size = 2E-6 #m
vhigh = -230E-3 #kV
negVHigh = 230E-3 #kV
relaxTime = 1e-9 #s
threeTimesRelaxTime = 3e-9 #s
resistance = 1
area = 5.02e-7 # Formerly 3.14e-6
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# line_search = none
end_time = 10E-6
steady_state_detection = 1
steady_state_tolerance = 1E-15
steady_state_start_time = ${threeTimesRelaxTime}
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 1e-8
nl_abs_tol = 2e-6
dtmin = 1e-15
# dtmax = 1E-6
nl_max_its = 50
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-13
growth_factor = 1.2
optimal_iterations = 20
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[current_density_user_object]
type = CurrentDensityShapeSideUserObject
boundary = left
potential = potential
em = em
ip = Arp
mean_en = mean_en
execute_on = 'linear nonlinear'
[]
[data_provider]
type = ProvideMobility
electrode_area = ${area}
ballast_resist = ${resistance}
e = 1.6e-19
[]
[]
[Kernels]
## Stabilization
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
offset = 20
block = 0
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
offset = 20
block = 0
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 35
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = DensityMoles
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = DensityMoles
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
# [potential_left]
# type = NeumannCircuitVoltageMoles_KV
# variable = potential
# boundary = left
# function = potential_bc_func
# ions = Arp
# data_provider = data_provider
# electrons = em
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[potential_left]
boundary = left
type = PenaltyCircuitPotential
variable = potential
current = current_density_user_object
surface_potential = ${negVHigh}
surface = 'cathode'
penalty = 1
data_provider = data_provider
electrons = em
ions = Arp
electron_energy = mean_en
area = ${area}
potential_units = 'kV'
position_units = ${dom0Scale}
resistance = ${resistance}
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SchottkyEmissionBC
# type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
tau = ${relaxTime}
relax = true
emission_coeffs = 0.02
[]
# [em_physical_left]
# type = HagelaarElectronBC
# variable = em
# boundary = 'left'
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[em_physical_right]
type = HagelaarElectronAdvectionBC
variable = em
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -30
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -30
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -25
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.02
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/reflections/Schottky_300_V_5_um/Input.i)
dom0Scale = 1
dom0Size = 5E-6 #m
vhigh = -400E-3 #kV
[GlobalParams]
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# line_search = none
end_time = 10E6
steady_state_detection = 1
steady_state_tolerance = 1E-15
steady_state_start_time = 1E-6
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 1e-9
nl_abs_tol = 1e-9
dtmin = 1e-16
dtmax = 0.1E-7
nl_max_its = 100
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-13
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e0
e = 1.6e-19
[]
[]
[Kernels]
## Stabilization
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
offset = 45
block = 0
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
offset = 45
block = 0
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 45
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.02
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SchottkyEmissionBC
# type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
tau = 100E-9
relax = true
emission_coeffs = 0.02
[]
# [em_physical_left]
# type = HagelaarElectronBC
# variable = em
# boundary = 'left'
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[em_physical_right]
type = HagelaarElectronAdvectionBC
variable = em
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
# [Arp_physical_left_diffusion]
# type = HagelaarIonDiffusionBC
# variable = Arp
# boundary = 'left'
# r = 0
# position_units = ${dom0Scale}
# []
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
# [Arp_physical_right_diffusion]
# type = HagelaarIonDiffusionBC
# variable = Arp
# boundary = right
# r = 0
# position_units = ${dom0Scale}
# []
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyAdvectionBC
variable = mean_en
boundary = 'left'
ions = Arp
r = 0
position_units = ${dom0Scale}
secondary_electron_energy = 3
emission_coeffs = 0.02
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -42
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -45
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -36
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.02
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/Schottky_emission/Example4/Jac.i)
dom0Scale = 1
dom0Size = 2E-6 #m
vhigh = 230E-3 #kV
negVHigh = -230E-3 #kV
# relaxTime = 50E-6 #s
threeTimesRelaxTime = 150E-6 #s
resistance = 1
area = 5.02e-7 # Formerly 3.14e-6
[GlobalParams]
# offset = 25
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
# type = FileMesh
# file = 'Geometry.msh'
type = GeneratedMesh
nx = 1
dim = 1
xmax = ${dom0Size}
[]
[Problem]
type = FEProblem
kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# line_search = none
end_time = 10E6
steady_state_detection = 1
steady_state_tolerance = 1E-15
steady_state_start_time = ${threeTimesRelaxTime}
petsc_options = '-snes_converged_reason -snes_linesearch_monitor -snes_test_display'
solve_type = NEWTON
petsc_options_iname = '-snes_type'
petsc_options_value = 'test'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dtmin = 1e-25
# dtmax = 1E-6
nl_max_its = 200
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-13
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[current_density_user_object]
type = CurrentDensityShapeSideUserObject
boundary = left
potential = potential
em = em
ip = Arp
mean_en = mean_en
execute_on = 'linear nonlinear'
[]
[data_provider]
type = ProvideMobility
electrode_area = ${area}
ballast_resist = ${resistance}
e = 1.6e-19
[]
[]
[Kernels]
## Stabilization
# [Arp_log_stabilization]
# type = LogStabilizationMoles
# variable = Arp
# offset = 20
# block = 0
# []
# [em_log_stabilization]
# type = LogStabilizationMoles
# variable = em
# offset = 20
# block = 0
# []
# [mean_en_log_stabilization]
# type = LogStabilizationMoles
# variable = mean_en
# block = 0
# offset = 35
# []
# # [mean_en_advection_stabilization]
# # type = EFieldArtDiff
# # variable = mean_en
# # block = 0
# # []
# [em_time_deriv]
# type = ElectronTimeDerivative
# variable = em
# block = 0
# []
# [em_advection]
# type = EFieldAdvection
# variable = em
# mean_en = mean_en
# block = 0
# position_units = ${dom0Scale}
# []
# [em_diffusion]
# type = CoeffDiffusion
# variable = em
# mean_en = mean_en
# block = 0
# position_units = ${dom0Scale}
# []
# [em_ionization]
# type = ElectronsFromIonization
# em = em
# variable = em
# mean_en = mean_en
# block = 0
# position_units = ${dom0Scale}
# []
# [potential_diffusion_dom1]
# type = CoeffDiffusionLin
# variable = potential
# block = 0
# position_units = ${dom0Scale}
# []
# [Arp_charge_source]
# type = ChargeSourceMoles_KV
# variable = potential
# charged = Arp
# block = 0
# []
# [em_charge_source]
# type = ChargeSourceMoles_KV
# variable = potential
# charged = em
# block = 0
# []
# [Arp_time_deriv]
# type = ElectronTimeDerivative
# variable = Arp
# block = 0
# []
# [Arp_advection]
# type = EFieldAdvection
# variable = Arp
# position_units = ${dom0Scale}
# block = 0
# []
# [Arp_diffusion]
# type = CoeffDiffusion
# variable = Arp
# block = 0
# position_units = ${dom0Scale}
# []
# [Arp_ionization]
# type = IonsFromIonization
# variable = Arp
# em = em
# mean_en = mean_en
# block = 0
# position_units = ${dom0Scale}
# []
# [mean_en_time_deriv]
# type = ElectronTimeDerivative
# variable = mean_en
# block = 0
# []
# [mean_en_advection]
# type = EFieldAdvection
# variable = mean_en
# em = em
# block = 0
# position_units = ${dom0Scale}
# []
# [mean_en_diffusion]
# type = CoeffDiffusion
# variable = mean_en
# em = em
# block = 0
# position_units = ${dom0Scale}
# []
# [mean_en_joule_heating]
# type = JouleHeating
# variable = mean_en
# em = em
# block = 0
# position_units = ${dom0Scale}
# []
# [mean_en_ionization]
# type = ElectronEnergyLossFromIonization
# variable = mean_en
# em = em
# block = 0
# position_units = ${dom0Scale}
# []
# [mean_en_elastic]
# type = ElectronEnergyLossFromElastic
# variable = mean_en
# em = em
# block = 0
# position_units = ${dom0Scale}
# []
# [mean_en_excitation]
# type = ElectronEnergyLossFromExcitation
# variable = mean_en
# em = em
# block = 0
# position_units = ${dom0Scale}
# []
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
# [potential_left]
# type = NeumannCircuitVoltageMoles_KV
# variable = potential
# boundary = left
# function = potential_bc_func
# ions = Arp
# data_provider = data_provider
# electrons = em
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[potential_left]
boundary = left
type = PenaltyCircuitPotential
variable = potential
current = current_density_user_object
surface_potential = ${negVHigh}
surface = 'cathode'
penalty = 1
data_provider = data_provider
electrons = em
ions = Arp
electron_energy = mean_en
area = ${area}
potential_units = 'kV'
position_units = ${dom0Scale}
resistance = ${resistance}
[]
# [potential_dirichlet_right]
# type = DirichletBC
# variable = potential
# boundary = right
# value = 0
# []
# ## Electron boundary conditions ##
# [Emission_left]
# type = SchottkyEmissionBC
# # type = SecondaryElectronBC
# variable = em
# boundary = 'left'
# ions = Arp
# electron_energy = mean_en
# r = 1
# position_units = ${dom0Scale}
# # tau = ${relaxTime}
# relax = true
# []
# # [em_physical_left]
# # type = HagelaarElectronBC
# # variable = em
# # boundary = 'left'
# # electron_energy = mean_en
# # r = 0
# # position_units = ${dom0Scale}
# # []
# [em_physical_right]
# type = HagelaarElectronAdvectionBC
# variable = em
# boundary = right
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
# ## Argon boundary conditions ##
# [Arp_physical_left_diffusion]
# type = HagelaarIonDiffusionBC
# variable = Arp
# boundary = 'left'
# r = 0
# position_units = ${dom0Scale}
# []
# [Arp_physical_left_advection]
# type = HagelaarIonAdvectionBC
# variable = Arp
# boundary = 'left'
# r = 0
# position_units = ${dom0Scale}
# []
# [Arp_physical_right_diffusion]
# type = HagelaarIonDiffusionBC
# variable = Arp
# boundary = right
# r = 0
# position_units = ${dom0Scale}
# []
# [Arp_physical_right_advection]
# type = HagelaarIonAdvectionBC
# variable = Arp
# boundary = right
# r = 0
# position_units = ${dom0Scale}
# []
# ## Mean energy boundary conditions ##
# [mean_en_physical_left]
# type = HagelaarEnergyBC
# variable = mean_en
# boundary = 'left'
# electrons = em
# ions = Arp
# r = 0
# position_units = ${dom0Scale}
# []
# [mean_en_physical_right]
# type = HagelaarEnergyBC
# variable = mean_en
# boundary = right
# electrons = em
# ions = Arp
# r = 0
# position_units = ${dom0Scale}
# []
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
variable = em
type = RandomIC
block = 0
min = -20
max = -15
[]
[Arp_ic]
variable = Arp
type = RandomIC
block = 0
min = -20
max = -15
[]
[mean_en_ic]
variable = mean_en
type = RandomIC
block = 0
min = -20
max = -15
[]
[]
[Functions]
# [potential_bc_func]
# type = ParsedFunction
# symbol_names = 'VHigh'
# symbol_values = '${vhigh}'
# expression = 'VHigh'
# []
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.02
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/1d_dc/NonlocalPotentialBCWithSchottky.i)
dom0Scale = 1
dom0Size = 2E-6 #m
vhigh = 230E-3 #kV
relaxTime = 1e-9 #s
resistance = 1
area = 5.02e-7 # Formerly 3.14e-6
[GlobalParams]
potential_units = kV
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# line_search = none
end_time = 10E-6
steady_state_detection = 1
steady_state_tolerance = 1E-15
steady_state_start_time = '${fparse 3 * relaxTime}'
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type'
petsc_options_value = 'lu'
line_search = 'none'
nl_abs_tol = 2e-6
dtmin = 1e-15
# dtmax = 1E-6
nl_max_its = 50
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-13
growth_factor = 1.2
optimal_iterations = 20
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[current_density_user_object]
type = CurrentDensityShapeSideUserObject
boundary = left
potential = potential
em = em
ip = Arp
mean_en = mean_en
execute_on = 'linear nonlinear'
[]
[data_provider]
type = ProvideMobility
electrode_area = ${area}
ballast_resist = ${resistance}
e = 1.6e-19
[]
[]
[Kernels]
## Stabilization
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
offset = 20
block = 0
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
offset = 20
block = 0
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 35
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = DensityMoles
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = DensityMoles
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
# [potential_left]
# type = NeumannCircuitVoltageMoles_KV
# variable = potential
# boundary = left
# function = potential_bc_func
# ions = Arp
# data_provider = data_provider
# electrons = em
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[potential_left]
boundary = left
type = PenaltyCircuitPotential
variable = potential
current = current_density_user_object
surface_potential = -${vhigh}
surface = 'cathode'
penalty = 1000
data_provider = data_provider
electrons = em
ions = Arp
electron_energy = mean_en
area = ${area}
potential_units = 'kV'
position_units = ${dom0Scale}
resistance = ${resistance}
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SchottkyEmissionBC
# type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
tau = ${relaxTime}
relax = true
emission_coeffs = 0.02
[]
# [em_physical_left]
# type = HagelaarElectronBC
# variable = em
# boundary = 'left'
# mean_en = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[em_physical_right]
type = HagelaarElectronAdvectionBC
variable = em
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -30
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -30
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -25
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.02
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[]
(test/tests/Schottky_emission/Example2/Input.i)
dom0Scale = 1
dom0Size = 12E-6 #m
vhigh = -80E-3 #kV
[GlobalParams]
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# line_search = none
end_time = 10E6
steady_state_detection = 1
steady_state_tolerance = 1E-15
steady_state_start_time = 10E-6
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 1e-15
nl_abs_tol = 1e-11
dtmin = 1e-16
# dtmax = 1E-6
nl_max_its = 100
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-11
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e0
e = 1.6e-19
[]
[]
[Kernels]
## Stabilization
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
offset = 50
block = 0
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
offset = 50
block = 0
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 50
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.02
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SchottkyEmissionBC
# type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
# tau = 10E-6
relax = true
emission_coeffs = 0.02
[]
# [em_physical_left]
# type = HagelaarElectronBC
# variable = em
# boundary = 'left'
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[em_physical_right]
type = HagelaarElectronAdvectionBC
variable = em
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -30
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -30
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -29
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.02
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/DriftDiffusionAction/mean_en_actions.i)
dom0Scale = 1e-3
dom1Scale = 1e-7
[GlobalParams]
offset = 20.0
# offset = 0
potential_units = kV
use_moles = true
# potential_units = V
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'liquidNew.msh'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
input = file
[]
[interface_again]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'master1_interface'
input = interface
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = interface_again
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
ksp_norm = none
[]
[]
[Executioner]
type = Transient
end_time = 1e-1
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
# petsc_options = '-snes_test_display'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
# petsc_options_iname = '-pc_type -sub_pc_type'
# petsc_options_value = 'asm lu'
# petsc_options_iname = '-snes_type'
# petsc_options_value = 'test'
nl_rel_tol = 1e-4
nl_abs_tol = 7.6e-5
dtmin = 1e-12
l_max_its = 20
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-11
# dt = 1.1
growth_factor = 1.2
optimal_iterations = 15
[]
[]
[]
[Outputs]
file_base = out
perf_graph = true
[out]
type = Exodus
execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e6
e = 1.6e-19
# electrode_area = 1.1
# ballast_resist = 1.1
# e = 1.1
[]
[]
#The potential needs to be defined outside of the Action,
#since it is present in both Blocks
[Variables]
[potential]
[]
[]
#Action the supplies the drift-diffusion equations for both Blocks,
#This action also adds JouleHeating and the ChargeSourceMoles_KV Kernels
[DriftDiffusionAction]
[Plasma]
electrons = em
charged_particle = Arp
field = potential
Is_field_unique = false
mean_energy = mean_en
using_offset = true
position_units = ${dom0Scale}
block = 0
Additional_Outputs = 'ElectronTemperature Current EField'
[]
[Water]
electrons = emliq
charged_particle = OHm
field = potential
Is_field_unique = false
using_offset = true
position_units = ${dom1Scale}
block = 1
Additional_Outputs = 'Current EField'
[]
[]
#The Kernels supply the sources terms
[Kernels]
[em_ionization]
type = ElectronsFromIonization
variable = em
mean_en = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[emliq_reactant_first_order_rxn]
type = ReactantFirstOrderRxn
variable = emliq
block = 1
[]
[emliq_water_bi_sink]
type = ReactantAARxn
variable = emliq
block = 1
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[OHm_product_first_order_rxn]
type = ProductFirstOrderRxn
variable = OHm
v = emliq
block = 1
[]
[OHm_product_aabb_rxn]
type = ProductAABBRxn
variable = OHm
v = emliq
block = 1
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[]
[AuxVariables]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[rholiq]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_liq_current]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[tot_flux_OHm]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[DiffusiveFlux_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[x_nl]
type = Position
variable = x_node
position_units = ${dom1Scale}
block = 1
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_density Arp_density'
expression = 'Arp_density - em_density'
execute_on = 'timestep_end'
block = 0
[]
[rholiq]
type = ParsedAux
variable = rholiq
coupled_variables = 'emliq_density OHm_density'
expression = '-emliq_density - OHm_density'
execute_on = 'timestep_end'
block = 1
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[tot_liq_current]
type = ParsedAux
variable = tot_liq_current
coupled_variables = 'Current_emliq Current_OHm' # Current_H3Op Current_OHm'
expression = 'Current_emliq + Current_OHm' # + Current_H3Op + Current_OHm'
execute_on = 'timestep_end'
block = 1
[]
[tot_flux_OHm]
block = 1
type = ADTotalFlux
density_log = OHm
variable = tot_flux_OHm
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_emliq]
type = ADEFieldAdvAux
density_log = emliq
variable = EFieldAdvAux_emliq
block = 1
position_units = ${dom1Scale}
[]
[DiffusiveFlux_emliq]
type = ADDiffusiveFlux
density_log = emliq
variable = DiffusiveFlux_emliq
block = 1
position_units = ${dom1Scale}
[]
[]
[InterfaceKernels]
[em_advection]
type = InterfaceAdvection
neighbor_var = em
variable = emliq
boundary = master1_interface
position_units = ${dom1Scale}
neighbor_position_units = ${dom0Scale}
[]
[em_diffusion]
type = InterfaceLogDiffusionElectrons
neighbor_var = em
variable = emliq
boundary = master1_interface
position_units = ${dom1Scale}
neighbor_position_units = ${dom0Scale}
[]
[]
[BCs]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'master0_interface'
electrons = em
r = 0.99
position_units = ${dom0Scale}
[]
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[secondary_energy_left]
type = SecondaryElectronEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
ions = 'Arp'
r = 0
emission_coeffs = 0.05
position_units = ${dom0Scale}
secondary_electron_energy = 3
[]
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.05
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
[em_physical_right]
type = HagelaarElectronBC
variable = em
boundary = 'master0_interface'
electron_energy = mean_en
r = 0.99
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'master0_interface'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'master0_interface'
r = 0
position_units = ${dom0Scale}
[]
[em_physical_left]
type = HagelaarElectronBC
variable = em
boundary = 'left'
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
[sec_electrons_left]
type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.05
[]
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[emliq_right]
type = DCIonBC
variable = emliq
boundary = right
position_units = ${dom1Scale}
[]
[OHm_physical]
type = DCIonBC
variable = OHm
boundary = 'right'
position_units = ${dom1Scale}
[]
[]
[ICs]
[em_ic]
type = ConstantIC
variable = em
value = -21
block = 0
[]
[emliq_ic]
type = ConstantIC
variable = emliq
value = -21
block = 1
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -21
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -20
block = 0
[]
[OHm_ic]
type = ConstantIC
variable = OHm
value = -15.6
block = 1
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
# expression = '1.25*tanh(1e6*t)'
expression = -1.25
[]
[potential_ic_func]
type = ParsedFunction
expression = '-1.25 * (1.0001e-3 - x)'
[]
[]
[Materials]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.05
block = 0
property_tables_file = td_argon_mean_en.txt
[]
[water_block]
type = Water
block = 1
[]
[]
(test/tests/reflections/low_initial/Input.i)
dom0Scale = 1
dom0Size = 6E-6 #m
vhigh = -175E-3 #kV
[GlobalParams]
# offset = 20
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
line_search = none
end_time = 10E-6
steady_state_detection = 1
steady_state_tolerance = 1E-15
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 5e-14
nl_abs_tol = 1e-13
steady_state_start_time = 1E-6
dtmin = 1e-18
dtmax = 0.1E-7
nl_max_its = 200
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.9
dt = 1e-13
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e6
e = 1.6e-19
[]
[]
[Kernels]
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
# [em_log_stabilization]
# type = LogStabilizationMoles
# variable = em
# block = 0
# []
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
# [Arp_log_stabilization]
# type = LogStabilizationMoles
# variable = Arp
# block = 0
# []
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
# [mean_en_log_stabilization]
# type = LogStabilizationMoles
# variable = mean_en
# block = 0
# offset = 15
# []
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.01
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
emission_coeffs = 0.01
[]
[em_physical_left]
type = HagelaarElectronBC
variable = em
boundary = 'left'
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
[em_physical_right]
type = HagelaarElectronBC
variable = em
boundary = right
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -36
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -36
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -36
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.01
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/1d_dc/mean_en.i)
dom0Scale = 1e-3
dom1Scale = 1e-7
[GlobalParams]
offset = 20
# offset = 0
potential_units = kV
use_moles = true
# potential_units = V
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'liquidNew.msh'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
input = file
[]
[interface_again]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'master1_interface'
input = interface
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = interface_again
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
ksp_norm = none
[]
[]
[Executioner]
type = Transient
end_time = 1e-1
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
#petsc_options = '-snes_converged_reason -snes_linesearch_monitor -snes_test_jacobian'
# petsc_options = '-snes_test_display'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
# petsc_options_iname = '-pc_type -sub_pc_type'
# petsc_options_value = 'asm lu'
# petsc_options_iname = '-snes_type'
# petsc_options_value = 'test'
nl_rel_tol = 1e-4
nl_abs_tol = 7.6e-5
dtmin = 1e-12
l_max_its = 20
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-11
# dt = 1.1
growth_factor = 1.2
optimal_iterations = 15
[]
[]
[]
[Outputs]
perf_graph = true
# print_linear_residuals = false
[out]
type = Exodus
execute_on = 'final'
[]
[dof_map]
type = DOFMap
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e6
e = 1.6e-19
[]
[]
[Kernels]
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
variable = em
mean_en = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
block = 0
[]
[emliq_time_deriv]
type = ElectronTimeDerivative
variable = emliq
block = 1
[]
[emliq_advection]
type = EFieldAdvection
variable = emliq
block = 1
position_units = ${dom1Scale}
[]
[emliq_diffusion]
type = CoeffDiffusion
variable = emliq
block = 1
position_units = ${dom1Scale}
[]
[emliq_reactant_first_order_rxn]
type = ReactantFirstOrderRxn
variable = emliq
block = 1
[]
[emliq_water_bi_sink]
type = ReactantAARxn
variable = emliq
block = 1
[]
[emliq_log_stabilization]
type = LogStabilizationMoles
variable = emliq
block = 1
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom2]
type = CoeffDiffusionLin
variable = potential
block = 1
position_units = ${dom1Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[emliq_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = emliq
block = 1
[]
[OHm_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = OHm
block = 1
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
block = 0
[]
[OHm_time_deriv]
type = ElectronTimeDerivative
variable = OHm
block = 1
[]
[OHm_advection]
type = EFieldAdvection
variable = OHm
block = 1
position_units = ${dom1Scale}
[]
[OHm_diffusion]
type = CoeffDiffusion
variable = OHm
block = 1
position_units = ${dom1Scale}
[]
[OHm_log_stabilization]
type = LogStabilizationMoles
variable = OHm
block = 1
[]
[OHm_product_first_order_rxn]
type = ProductFirstOrderRxn
variable = OHm
v = emliq
block = 1
[]
[OHm_product_aabb_rxn]
type = ProductAABBRxn
variable = OHm
v = emliq
block = 1
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 15
[]
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[emliq]
block = 1
# scaling = 1e-5
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
# scaling = 1e-1
[]
[OHm]
block = 1
# scaling = 1e-5
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[rholiq]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[emliq_lin]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[OHm_lin]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_OHm]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_liq_current]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[tot_flux_OHm]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[DiffusiveFlux_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_l]
type = Position
variable = x
position_units = ${dom1Scale}
block = 1
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[x_nl]
type = Position
variable = x_node
position_units = ${dom1Scale}
block = 1
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[rholiq]
type = ParsedAux
variable = rholiq
coupled_variables = 'emliq_lin OHm_lin' # H3Op_lin OHm_lin'
expression = '-emliq_lin - OHm_lin' # 'H3Op_lin - em_lin - OHm_lin'
execute_on = 'timestep_end'
block = 1
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[tot_liq_current]
type = ParsedAux
variable = tot_liq_current
coupled_variables = 'Current_emliq Current_OHm' # Current_H3Op Current_OHm'
expression = 'Current_emliq + Current_OHm' # + Current_H3Op + Current_OHm'
execute_on = 'timestep_end'
block = 1
[]
[em_lin]
type = DensityMoles
variable = em_lin
density_log = em
block = 0
[]
[emliq_lin]
type = DensityMoles
variable = emliq_lin
density_log = emliq
block = 1
[]
[Arp_lin]
type = DensityMoles
variable = Arp_lin
density_log = Arp
block = 0
[]
[OHm_lin]
type = DensityMoles
variable = OHm_lin
density_log = OHm
block = 1
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Efield_l]
type = Efield
component = 0
variable = Efield
position_units = ${dom1Scale}
block = 1
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_emliq]
type = ADCurrent
density_log = emliq
variable = Current_emliq
art_diff = false
block = 1
position_units = ${dom1Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_OHm]
block = 1
type = ADCurrent
density_log = OHm
variable = Current_OHm
art_diff = false
position_units = ${dom1Scale}
[]
[tot_flux_OHm]
block = 1
type = ADTotalFlux
density_log = OHm
variable = tot_flux_OHm
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_emliq]
type = ADEFieldAdvAux
density_log = emliq
variable = EFieldAdvAux_emliq
block = 1
position_units = ${dom1Scale}
[]
[DiffusiveFlux_emliq]
type = ADDiffusiveFlux
density_log = emliq
variable = DiffusiveFlux_emliq
block = 1
position_units = ${dom1Scale}
[]
[]
[InterfaceKernels]
[em_advection]
type = InterfaceAdvection
neighbor_var = em
variable = emliq
boundary = master1_interface
position_units = ${dom1Scale}
neighbor_position_units = ${dom0Scale}
[]
[em_diffusion]
type = InterfaceLogDiffusionElectrons
neighbor_var = em
variable = emliq
boundary = master1_interface
position_units = ${dom1Scale}
neighbor_position_units = ${dom0Scale}
[]
[]
[BCs]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'master0_interface'
electrons = em
r = 0.99
position_units = ${dom0Scale}
[]
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[secondary_energy_left]
type = SecondaryElectronEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
ions = 'Arp'
r = 0
emission_coeffs = 0.05
secondary_electron_energy = 3
position_units = ${dom0Scale}
[]
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.05
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
preset = false
[]
[em_physical_right]
type = HagelaarElectronBC
variable = em
boundary = 'master0_interface'
electron_energy = mean_en
r = 0.99
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'master0_interface'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'master0_interface'
r = 0
position_units = ${dom0Scale}
[]
[em_physical_left]
type = HagelaarElectronBC
variable = em
boundary = 'left'
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
[sec_electrons_left]
type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.05
[]
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[emliq_right]
type = DCIonBC
variable = emliq
boundary = right
position_units = ${dom1Scale}
[]
[OHm_physical]
type = DCIonBC
variable = OHm
boundary = 'right'
position_units = ${dom1Scale}
[]
[]
[ICs]
[em_ic]
type = ConstantIC
variable = em
value = -21
block = 0
[]
[emliq_ic]
type = ConstantIC
variable = emliq
value = -21
block = 1
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -21
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -20
block = 0
[]
[OHm_ic]
type = ConstantIC
variable = OHm
value = -15.6
block = 1
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
# expression = '1.25*tanh(1e6*t)'
expression = -1.25
[]
[potential_ic_func]
type = ParsedFunction
expression = '-1.25 * (1.0001e-3 - x)'
[]
[]
[Materials]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.05
block = 0
property_tables_file = td_argon_mean_en.txt
[]
[water_block]
type = Water
block = 1
[]
[field_solver]
type = FieldSolverMaterial
potential = potential
block = '0 1'
[]
[]
(test/tests/reflections/base/Input.i)
dom0Scale = 1
dom0Size = 6E-6 #m
vhigh = -175E-3 #kV
[GlobalParams]
# offset = 20
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 10E-6
steady_state_detection = 1
steady_state_tolerance = 1E-15
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 1e-15
nl_abs_tol = 0.5e-12
steady_state_start_time = 1E-6
dtmin = 1e-18
dtmax = 0.1E-7
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.9
dt = 1e-13
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e6
e = 1.6e-19
[]
[]
[Kernels]
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
# [em_log_stabilization]
# type = LogStabilizationMoles
# variable = em
# block = 0
# []
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
# [Arp_log_stabilization]
# type = LogStabilizationMoles
# variable = Arp
# block = 0
# []
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
# [mean_en_log_stabilization]
# type = LogStabilizationMoles
# variable = mean_en
# block = 0
# offset = 15
# []
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.01
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
emission_coeffs = 0.01
[]
[em_physical_left]
type = HagelaarElectronBC
variable = em
boundary = 'left'
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
[em_physical_right]
type = HagelaarElectronBC
variable = em
boundary = right
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 1
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 1
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -35
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -35
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -35
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.01
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/reflections/Schottky/Input.i)
dom0Scale = 1
dom0Size = 10E-6 #m
vhigh = -150E-3 #kV
[GlobalParams]
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# line_search = none
end_time = 10E-6
steady_state_detection = 1
steady_state_tolerance = 1E-15
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 5e-14
nl_abs_tol = 1e-13
steady_state_start_time = 1E-6
dtmin = 1e-16
dtmax = 0.1E-7
nl_max_its = 200
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.9
dt = 1e-13
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e6
e = 1.6e-19
[]
[]
[Kernels]
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
offset = 40
block = 0
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
offset = 40
block = 0
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 30
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.02
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SchottkyEmissionBC
# type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
emission_coeffs = 0.02
[]
# [em_physical_left]
# type = HagelaarElectronBC
# variable = em
# boundary = 'left'
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[em_physical_right]
type = HagelaarElectronBC
variable = em
boundary = right
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -42
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -45
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -36
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.02
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/Schottky_emission/Example1/Input.i)
dom0Scale = 1
dom0Size = 4E-6 #m
vhigh = -200E-3 #kV
[GlobalParams]
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# line_search = none
end_time = 10E6
steady_state_detection = 1
steady_state_tolerance = 1E-15
steady_state_start_time = 10E-6
petsc_options = '-snes_converged_reason -snes_linesearch_monitor -snes_ksp_ew'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 1e-4
nl_abs_tol = 5e-10
dtmin = 1e-16
# dtmax = 1E-6
nl_max_its = 100
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-11
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e0
e = 1.6e-19
[]
[]
[Kernels]
## Stabilization
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
offset = 50
block = 0
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
offset = 50
block = 0
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 50
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.02
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SchottkyEmissionBC
# type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
# tau = 10E-6
relax = true
emission_coeffs = 0.02
[]
# [em_physical_left]
# type = HagelaarElectronBC
# variable = em
# boundary = 'left'
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[em_physical_right]
type = HagelaarElectronAdvectionBC
variable = em
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -40
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -40
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -39
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.02
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/reflections/high_initial/Input.i)
dom0Scale = 1
dom0Size = 6E-6 #m
vhigh = -175E-3 #kV
[GlobalParams]
# offset = 20
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
line_search = none
end_time = 10E-6
steady_state_detection = 1
steady_state_tolerance = 1E-15
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 5e-14
nl_abs_tol = 1e-13
steady_state_start_time = 1E-6
dtmin = 1e-18
dtmax = 0.1E-7
nl_max_its = 200
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.9
dt = 1e-13
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e6
e = 1.6e-19
[]
[]
[Kernels]
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
# [em_log_stabilization]
# type = LogStabilizationMoles
# variable = em
# block = 0
# []
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
# [Arp_log_stabilization]
# type = LogStabilizationMoles
# variable = Arp
# block = 0
# []
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
# [mean_en_log_stabilization]
# type = LogStabilizationMoles
# variable = mean_en
# block = 0
# offset = 15
# []
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.01
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
emission_coeffs = 0.01
[]
[em_physical_left]
type = HagelaarElectronBC
variable = em
boundary = 'left'
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
[em_physical_right]
type = HagelaarElectronBC
variable = em
boundary = right
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -30
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -30
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -30
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.01
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/Schottky_emission/Example3/Input.i)
dom0Scale = 1
dom0Size = 2E-6 #m
vhigh = -230E-3 #kV
# relaxTime = 50E-6 #s
threeTimesRelaxTime = 150E-6 #s
[GlobalParams]
# offset = 25
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# line_search = none
end_time = 10E6
steady_state_detection = 1
steady_state_tolerance = 1E-15
steady_state_start_time = ${threeTimesRelaxTime}
petsc_options = '-snes_converged_reason -snes_linesearch_monitor -snes_ksp_ew'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda -ksp_gmres_restart'
petsc_options_value = 'gamg NONZERO 1.e-10 preonly 1e-3 100'
nl_rel_tol = 1e-8
nl_abs_tol = 1e-10
dtmin = 1e-25
# dtmax = 1E-6
nl_max_its = 200
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-13
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e0
e = 1.6e-19
[]
[]
[Kernels]
## Stabilization
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
offset = 20
block = 0
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
offset = 20
block = 0
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 35
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.02
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SchottkyEmissionBC
# type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
# tau = ${relaxTime}
relax = true
emission_coeffs = 0.02
[]
# [em_physical_left]
# type = HagelaarElectronBC
# variable = em
# boundary = 'left'
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[em_physical_right]
type = HagelaarElectronAdvectionBC
variable = em
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -30
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -30
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -25
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.02
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/reflections/Schottky_400_V_10_um/Input.i)
dom0Scale = 1
dom0Size = 5E-6 #m
vhigh = -175E-3 #kV
[GlobalParams]
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# line_search = none
end_time = 10E-6
steady_state_detection = 1
steady_state_tolerance = 1E-15
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 5e-14
nl_abs_tol = 1e-13
steady_state_start_time = 1E-6
dtmin = 1e-30
dtmax = 0.1E-7
nl_max_its = 200
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.9
dt = 1e-13
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e3
e = 1.6e-19
[]
[]
[Kernels]
## Stabilization
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
offset = 45
block = 0
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
offset = 45
block = 0
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 45
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.02
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SchottkyEmissionBC
# type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
emission_coeffs = 0.02
[]
# [em_physical_left]
# type = HagelaarElectronBC
# variable = em
# boundary = 'left'
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[em_physical_right]
type = HagelaarElectronAdvectionBC
variable = em
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -42
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -45
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -36
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.02
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/1d_dc/densities_mean_en.i)
dom0Scale = 1e-3
dom1Scale = 1e-7
# dom0Scale=1.1
# dom1Scale=1.1
[GlobalParams]
offset = 20
# offset = 0
potential_units = kV
use_moles = true
# potential_units = V
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'liquidNew.msh'
[]
[interface]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '0'
paired_block = '1'
new_boundary = 'master0_interface'
input = file
[]
[interface_again]
type = SideSetsBetweenSubdomainsGenerator
primary_block = '1'
paired_block = '0'
new_boundary = 'master1_interface'
input = interface
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = interface_again
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
ksp_norm = none
[]
[]
[Executioner]
type = Transient
num_steps = 1
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 1e-4
nl_abs_tol = 7.6e-5
dtmin = 1e-12
l_max_its = 20
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-11
growth_factor = 1.2
optimal_iterations = 15
[]
[]
[]
[Outputs]
perf_graph = true
# print_linear_residuals = false
[out]
type = Exodus
execute_on = 'final'
[]
[dof_map]
type = DOFMap
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e6
e = 1.6e-19
# electrode_area = 1.1
# ballast_resist = 1.1
# e = 1.1
[]
[]
[Kernels]
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
variable = em
mean_en = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
block = 0
[]
[emliq_time_deriv]
type = ElectronTimeDerivative
variable = emliq
block = 1
[]
[emliq_advection]
type = EFieldAdvection
variable = emliq
block = 1
position_units = ${dom1Scale}
[]
[emliq_diffusion]
type = CoeffDiffusion
variable = emliq
block = 1
position_units = ${dom1Scale}
[]
[emliq_reactant_first_order_rxn]
type = ReactantFirstOrderRxn
variable = emliq
block = 1
[]
[emliq_water_bi_sink]
type = ReactantAARxn
variable = emliq
block = 1
[]
[emliq_log_stabilization]
type = LogStabilizationMoles
variable = emliq
block = 1
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom2]
type = CoeffDiffusionLin
variable = potential
block = 1
position_units = ${dom1Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[emliq_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = emliq
block = 1
[]
[OHm_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = OHm
block = 1
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
block = 0
[]
[OHm_time_deriv]
type = ElectronTimeDerivative
variable = OHm
block = 1
[]
[OHm_advection]
type = EFieldAdvection
variable = OHm
block = 1
position_units = ${dom1Scale}
[]
[OHm_diffusion]
type = CoeffDiffusion
variable = OHm
block = 1
position_units = ${dom1Scale}
[]
[OHm_log_stabilization]
type = LogStabilizationMoles
variable = OHm
block = 1
[]
[OHm_product_first_order_rxn]
type = ProductFirstOrderRxn
variable = OHm
v = emliq
block = 1
[]
[OHm_product_aabb_rxn]
type = ProductAABBRxn
variable = OHm
v = emliq
block = 1
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 15
[]
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[emliq]
block = 1
# scaling = 1e-5
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
# scaling = 1e-1
[]
[OHm]
block = 1
# scaling = 1e-5
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[rholiq]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[emliq_lin]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[OHm_lin]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_OHm]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_liq_current]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[tot_flux_OHm]
block = 1
order = CONSTANT
family = MONOMIAL
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[DiffusiveFlux_emliq]
order = CONSTANT
family = MONOMIAL
block = 1
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_l]
type = Position
variable = x
position_units = ${dom1Scale}
block = 1
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[x_nl]
type = Position
variable = x_node
position_units = ${dom1Scale}
block = 1
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[rholiq]
type = ParsedAux
variable = rholiq
coupled_variables = 'emliq_lin OHm_lin' # H3Op_lin OHm_lin'
expression = '-emliq_lin - OHm_lin' # 'H3Op_lin - em_lin - OHm_lin'
execute_on = 'timestep_end'
block = 1
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[tot_liq_current]
type = ParsedAux
variable = tot_liq_current
coupled_variables = 'Current_emliq Current_OHm' # Current_H3Op Current_OHm'
expression = 'Current_emliq + Current_OHm' # + Current_H3Op + Current_OHm'
execute_on = 'timestep_end'
block = 1
[]
[em_lin]
type = Density
variable = em_lin
density_log = em
block = 0
[]
[emliq_lin]
type = Density
variable = emliq_lin
density_log = emliq
block = 1
[]
[Arp_lin]
type = Density
variable = Arp_lin
density_log = Arp
block = 0
[]
[OHm_lin]
type = Density
variable = OHm_lin
density_log = OHm
block = 1
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Efield_l]
type = Efield
component = 0
variable = Efield
position_units = ${dom1Scale}
block = 1
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_emliq]
type = ADCurrent
density_log = emliq
variable = Current_emliq
art_diff = false
block = 1
position_units = ${dom1Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_OHm]
block = 1
type = ADCurrent
density_log = OHm
variable = Current_OHm
art_diff = false
position_units = ${dom1Scale}
[]
[tot_flux_OHm]
block = 1
type = ADTotalFlux
density_log = OHm
variable = tot_flux_OHm
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_emliq]
type = ADEFieldAdvAux
density_log = emliq
variable = EFieldAdvAux_emliq
block = 1
position_units = ${dom1Scale}
[]
[DiffusiveFlux_emliq]
type = ADDiffusiveFlux
density_log = emliq
variable = DiffusiveFlux_emliq
block = 1
position_units = ${dom1Scale}
[]
[]
[InterfaceKernels]
[em_advection]
type = InterfaceAdvection
neighbor_var = em
variable = emliq
boundary = master1_interface
position_units = ${dom1Scale}
neighbor_position_units = ${dom0Scale}
[]
[em_diffusion]
type = InterfaceLogDiffusionElectrons
neighbor_var = em
variable = emliq
boundary = master1_interface
position_units = ${dom1Scale}
neighbor_position_units = ${dom0Scale}
[]
[]
[BCs]
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.05
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
[em_physical_right]
type = HagelaarElectronBC
variable = em
boundary = 'master0_interface'
electron_energy = mean_en
r = 0.99
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'master0_interface'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'master0_interface'
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'master0_interface'
electrons = em
r = 0.99
position_units = ${dom0Scale}
[]
[em_physical_left]
type = HagelaarElectronBC
variable = em
boundary = 'left'
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
[]
[sec_electrons_left]
type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.05
[]
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[emliq_right]
type = DCIonBC
variable = emliq
boundary = right
position_units = ${dom1Scale}
[]
[OHm_physical]
type = DCIonBC
variable = OHm
boundary = 'right'
position_units = ${dom1Scale}
[]
[]
[ICs]
[em_ic]
type = ConstantIC
variable = em
value = -21
block = 0
[]
[emliq_ic]
type = ConstantIC
variable = emliq
value = -21
block = 1
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -21
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -20
block = 0
[]
[OHm_ic]
type = ConstantIC
variable = OHm
value = -15.6
block = 1
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
# [em_ic]
# type = RandomIC
# variable = em
# block = 0
# min = -21.5
# max = -20.5
# []
# [emliq_ic]
# type = RandomIC
# variable = emliq
# block = 1
# min = -21.5
# max = -20.5
# []
# [Arp_ic]
# type = RandomIC
# variable = Arp
# block = 0
# min = -21.5
# max = -20.5
# []
# [mean_en_ic]
# type = RandomIC
# variable = mean_en
# block = 0
# min = -20.5
# max = -19.5
# []
# type = RandomIC
# variable = OHm
# block = 1
# min = -16.1
# max = -15.1
# []
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
# expression = '1.25*tanh(1e6*t)'
expression = 1.25
[]
[potential_ic_func]
type = ParsedFunction
expression = '-1.25 * (1.0001e-3 - x)'
[]
[]
[Materials]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = .05
block = 0
property_tables_file = td_argon_mean_en.txt
[]
[water_block]
type = Water
block = 1
[]
[field_solver]
type = FieldSolverMaterial
potential = potential
block = '0 1'
[]
[]
(test/tests/Schottky_emission/PaschenLaw/Input.i)
dom0Scale = 1
dom0Size = 5E-6 #m
vhigh = -0.10 #kV
[GlobalParams]
# offset = 25
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'Geometry.msh'
[]
[add_left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[add_right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = add_left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
# line_search = none
end_time = 10E6
steady_state_detection = 1
steady_state_tolerance = 1E-15
steady_state_start_time = 10E-6
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 1e-15
nl_abs_tol = 1e-11
dtmin = 1e-20
# dtmax = 1E-6
nl_max_its = 200
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-11
growth_factor = 1.2
optimal_iterations = 100
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e0
e = 1.6e-19
[]
[]
[Kernels]
## Stabilization
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
offset = 50
block = 0
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
offset = 50
block = 0
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 50
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = ADPowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = ADPowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ADProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ADProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ADProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = ADCurrent
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = ADCurrent
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = ADEFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = ADDiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
## Potential boundary conditions ##
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ions = Arp
data_provider = data_provider
electrons = em
electron_energy = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.02
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
## Electron boundary conditions ##
[Emission_left]
type = SchottkyEmissionBC
# type = SecondaryElectronBC
variable = em
boundary = 'left'
ions = Arp
electron_energy = mean_en
r = 1
position_units = ${dom0Scale}
# tau = 5E-6
relax = true
emission_coeffs = 0.02
[]
# [em_physical_left]
# type = HagelaarElectronBC
# variable = em
# boundary = 'left'
# electron_energy = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[em_physical_right]
type = HagelaarElectronAdvectionBC
variable = em
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Argon boundary conditions ##
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
## Mean energy boundary conditions ##
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
electrons = em
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
[em_ic]
type = ConstantIC
variable = em
value = -33
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -33
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -29
block = 0
[]
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'VHigh'
symbol_values = '${vhigh}'
expression = 'VHigh'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[]
[Materials]
[field_solver]
type = FieldSolverMaterial
potential = potential
[]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.02
user_work_function = 4.55 # eV
user_field_enhancement = 55
user_Richardson_coefficient = 80E4
user_cathode_temperature = 1273
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]
(test/tests/field_emission/field_emission.i)
dom0Scale = 1
dom0Size = 5E-6 #m
vhigh = -0.15 #kV
[GlobalParams]
offset = 20
potential_units = kV
# potential_units = V
use_moles = true
[]
[Mesh]
[file]
type = FileMeshGenerator
file = 'micro_fe.msh'
[]
[left]
type = SideSetsFromNormalsGenerator
normals = '-1 0 0'
new_boundary = 'left'
input = file
[]
[right]
type = SideSetsFromNormalsGenerator
normals = '1 0 0'
new_boundary = 'right'
input = left
[]
[]
[Problem]
type = FEProblem
# kernel_coverage_check = false
[]
[Preconditioning]
[smp]
type = SMP
full = true
[]
[]
[Executioner]
type = Transient
end_time = 6E-6
petsc_options = '-snes_converged_reason -snes_linesearch_monitor'
solve_type = NEWTON
petsc_options_iname = '-pc_type -pc_factor_shift_type -pc_factor_shift_amount -ksp_type -snes_linesearch_minlambda'
petsc_options_value = 'lu NONZERO 1.e-10 preonly 1e-3'
nl_rel_tol = 1e-4
nl_abs_tol = 7.6e-5
dtmin = 1e-15
dtmax = 0.01E-7
[TimeSteppers]
[Adaptive]
type = IterationAdaptiveDT
cutback_factor = 0.4
dt = 1e-12
growth_factor = 1.2
optimal_iterations = 15
[]
[]
[]
[Outputs]
perf_graph = true
print_linear_residuals = false
[out]
type = Exodus
# execute_on = 'final'
[]
[]
[Debug]
show_var_residual_norms = true
[]
[UserObjects]
[data_provider]
type = ProvideMobility
electrode_area = 5.02e-7 # Formerly 3.14e-6
ballast_resist = 1e6
e = 1.6e-19
[]
[]
[Kernels]
[em_time_deriv]
type = ElectronTimeDerivative
variable = em
block = 0
[]
[em_advection]
type = EFieldAdvection
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[em_diffusion]
type = CoeffDiffusion
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[em_ionization]
type = ElectronsFromIonization
em = em
variable = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[em_log_stabilization]
type = LogStabilizationMoles
variable = em
block = 0
[]
# [em_advection_stabilization]
# type = EFieldArtDiff
# variable = em
# block = 0
# []
[potential_diffusion_dom1]
type = CoeffDiffusionLin
variable = potential
block = 0
position_units = ${dom0Scale}
[]
[Arp_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = Arp
block = 0
[]
[em_charge_source]
type = ChargeSourceMoles_KV
variable = potential
charged = em
block = 0
[]
[Arp_time_deriv]
type = ElectronTimeDerivative
variable = Arp
block = 0
[]
[Arp_advection]
type = EFieldAdvection
variable = Arp
position_units = ${dom0Scale}
block = 0
[]
[Arp_diffusion]
type = CoeffDiffusion
variable = Arp
block = 0
position_units = ${dom0Scale}
[]
[Arp_ionization]
type = IonsFromIonization
variable = Arp
em = em
mean_en = mean_en
block = 0
position_units = ${dom0Scale}
[]
[Arp_log_stabilization]
type = LogStabilizationMoles
variable = Arp
block = 0
[]
# [Arp_advection_stabilization]
# type = EFieldArtDiff
# variable = Arp
# block = 0
# []
[mean_en_time_deriv]
type = ElectronTimeDerivative
variable = mean_en
block = 0
[]
[mean_en_advection]
type = EFieldAdvection
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_diffusion]
type = CoeffDiffusion
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_joule_heating]
type = JouleHeating
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_ionization]
type = ElectronEnergyLossFromIonization
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_elastic]
type = ElectronEnergyLossFromElastic
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_excitation]
type = ElectronEnergyLossFromExcitation
variable = mean_en
em = em
block = 0
position_units = ${dom0Scale}
[]
[mean_en_log_stabilization]
type = LogStabilizationMoles
variable = mean_en
block = 0
offset = 15
[]
# [mean_en_advection_stabilization]
# type = EFieldArtDiff
# variable = mean_en
# block = 0
# []
[]
[Variables]
[potential]
[]
[em]
block = 0
[]
[Arp]
block = 0
[]
[mean_en]
block = 0
[]
[]
[AuxVariables]
[e_temp]
block = 0
order = CONSTANT
family = MONOMIAL
[]
[x]
order = CONSTANT
family = MONOMIAL
[]
[x_node]
[]
[rho]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[em_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Arp_lin]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Efield]
order = CONSTANT
family = MONOMIAL
[]
[Current_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[Current_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[tot_gas_current]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[EFieldAdvAux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[DiffusiveFlux_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_em]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[PowerDep_Arp]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_el]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_ex]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[ProcRate_iz]
order = CONSTANT
family = MONOMIAL
block = 0
[]
[]
[AuxKernels]
[PowerDep_em]
type = PowerDep
density_log = em
art_diff = false
potential_units = kV
variable = PowerDep_em
position_units = ${dom0Scale}
block = 0
[]
[PowerDep_Arp]
type = PowerDep
density_log = Arp
art_diff = false
potential_units = kV
variable = PowerDep_Arp
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_el]
type = ProcRate
em = em
proc = el
variable = ProcRate_el
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_ex]
type = ProcRate
em = em
proc = ex
variable = ProcRate_ex
position_units = ${dom0Scale}
block = 0
[]
[ProcRate_iz]
type = ProcRate
em = em
proc = iz
variable = ProcRate_iz
position_units = ${dom0Scale}
block = 0
[]
[e_temp]
type = ElectronTemperature
variable = e_temp
electron_density = em
mean_en = mean_en
block = 0
[]
[x_g]
type = Position
variable = x
position_units = ${dom0Scale}
block = 0
[]
[x_ng]
type = Position
variable = x_node
position_units = ${dom0Scale}
block = 0
[]
[rho]
type = ParsedAux
variable = rho
coupled_variables = 'em_lin Arp_lin'
expression = 'Arp_lin - em_lin'
execute_on = 'timestep_end'
block = 0
[]
[tot_gas_current]
type = ParsedAux
variable = tot_gas_current
coupled_variables = 'Current_em Current_Arp'
expression = 'Current_em + Current_Arp'
execute_on = 'timestep_end'
block = 0
[]
[em_lin]
type = Density
# convert_moles = true
variable = em_lin
density_log = em
block = 0
[]
[Arp_lin]
type = Density
# convert_moles = true
variable = Arp_lin
density_log = Arp
block = 0
[]
[Efield_g]
type = Efield
component = 0
variable = Efield
position_units = ${dom0Scale}
block = 0
[]
[Current_em]
type = Current
density_log = em
variable = Current_em
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[Current_Arp]
type = Current
density_log = Arp
variable = Current_Arp
art_diff = false
block = 0
position_units = ${dom0Scale}
[]
[EFieldAdvAux_em]
type = EFieldAdvAux
density_log = em
variable = EFieldAdvAux_em
block = 0
position_units = ${dom0Scale}
[]
[DiffusiveFlux_em]
type = DiffusiveFlux
density_log = em
variable = DiffusiveFlux_em
block = 0
position_units = ${dom0Scale}
[]
[]
[BCs]
[potential_left]
type = NeumannCircuitVoltageMoles_KV
variable = potential
boundary = left
function = potential_bc_func
ip = Arp
data_provider = data_provider
em = em
mean_en = mean_en
r = 0
position_units = ${dom0Scale}
emission_coeffs = 0.05
[]
[potential_dirichlet_right]
type = DirichletBC
variable = potential
boundary = right
value = 0
[]
[em_physical_right]
type = HagelaarElectronBC
variable = em
boundary = right
mean_en = mean_en
r = 0.99
position_units = ${dom0Scale}
[]
[Arp_physical_right_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_right_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = right
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_right]
type = HagelaarEnergyBC
variable = mean_en
boundary = right
em = em
ip = Arp
r = 0.99
position_units = ${dom0Scale}
[]
[em_physical_left]
type = HagelaarElectronBC
variable = em
boundary = 'left'
mean_en = mean_en
r = 0
position_units = ${dom0Scale}
[]
# [sec_electrons_left]
# type = SecondaryElectronBC
# variable = em
# boundary = 'left'
# ip = Arp
# mean_en = mean_en
# r = 0
# position_units = ${dom0Scale}
# []
[FieldEmission_left]
type = FieldEmissionBC
variable = em
boundary = 'left'
ip = Arp
mean_en = mean_en
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_diffusion]
type = HagelaarIonDiffusionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[Arp_physical_left_advection]
type = HagelaarIonAdvectionBC
variable = Arp
boundary = 'left'
r = 0
position_units = ${dom0Scale}
[]
[mean_en_physical_left]
type = HagelaarEnergyBC
variable = mean_en
boundary = 'left'
em = em
ip = Arp
r = 0
position_units = ${dom0Scale}
[]
[]
[ICs]
[em_ic]
type = ConstantIC
variable = em
value = -21
block = 0
[]
[Arp_ic]
type = ConstantIC
variable = Arp
value = -21
block = 0
[]
[mean_en_ic]
type = ConstantIC
variable = mean_en
value = -20
block = 0
[]
[potential_ic]
type = FunctionIC
variable = potential
function = potential_ic_func
[]
# [em_ic]
# type = RandomIC
# variable = em
# block = 0
# []
# [Arp_ic]
# type = RandomIC
# variable = Arp
# block = 0
# []
# [mean_en_ic]
# type = RandomIC
# variable = mean_en
# block = 0
# []
# [potential_ic]
# type = RandomIC
# variable = potential
# []
[]
[Functions]
[potential_bc_func]
type = ParsedFunction
symbol_names = 'period dutyCycle riseTime VHigh VLow'
symbol_values = '3E-6 0.1 5E-7 ${vhigh} -0.001'
expression = 'if((t % period) < dutyCycle*period , VHigh ,
if((t % period) < dutyCycle*period + riseTime, ((VLow - VHigh)/riseTime) * ((t % period) - period * dutyCycle) + VHigh,
if((t % period) < period - riseTime , VLow ,
if((t % period) < period , ((VHigh - VLow)/riseTime) * ((t % period) - period) + VHigh ,
0))))'
[]
[potential_ic_func]
type = ParsedFunction
expression = '-${vhigh} * (${dom0Size} - x) / ${dom0Size}'
[]
[cathode_temperature]
type = ParsedFunction
expression = 1500
[]
[]
[Materials]
[gas_block]
type = Gas
interp_trans_coeffs = true
interp_elastic_coeff = true
ramp_trans_coeffs = false
em = em
ip = Arp
mean_en = mean_en
user_se_coeff = 0.05
user_work_function = 4.55 # eV
user_field_enhancement = 55
property_tables_file = td_argon_mean_en.txt
block = 0
[]
[]