- variablesA subset of the variables that this time integrator should be applied to
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:A subset of the variables that this time integrator should be applied to
ImplicitMidpoint
Second-order Runge-Kutta (implicit midpoint) time integration.
The implicit midpoint method is second-order accurate. As a Gauss-Legendre method it is A-stable.
Description
With , the vector of nonlinear variables, and , a nonlinear operator, we write the PDE of interest as:
Using for the current time step, and for the previous step, the implicit midpoint integration scheme can be written:
This method can be expressed as a Runge-Kutta method with the following Butcher Tableau:
Input Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Set the enabled status of the MooseObject.