- num_binsThe number of bins for the histograms
C++ Type:unsigned int
Unit:(no unit assumed)
Controllable:No
Description:The number of bins for the histograms
- vppThe VectorPostprocessor to compute histogram of
C++ Type:VectorPostprocessorName
Unit:(no unit assumed)
Controllable:No
Description:The VectorPostprocessor to compute histogram of
HistogramVectorPostprocessor
Short Description
Compute a histogram for each column of a VectorPostprocessor
Description
Used to compute the histogram for all columns of another VectorPostprocessor (VPP). The only inputs are the other VPP (vpp
) and the number of bins to use in the histogram (num_bins
).
This will actually generate three columns for each column in the original VPP. The column_name
is the name of the vector considered in the histogram and is also the name used to declare the vector containing the histogram data.
column_name: The histogram data for the vector in the original VPP
column_name_lower: The lower bound for each bin
column_name_upper: The upper bound for each bin
Plotting
MOOSE comes with built-in plotting capabilities that can help plot the output of a HistogramVectorPostprocessor. These plotting capabilities are part of the Chigger
suite of visualization tools located in the moose/python
directory. To use them you must add the full path of your moose/python
directory to the environment variable called $PYTHONPATH
using something like:
export PYTHONPATH=/full/path/to/moose/python:$PYTHONPATH
Once that is completed a script such as the following will plot your data:
import matplotlib.pyplot as plt
import mooseutils
# Create Figure and Axes
figure = plt.figure(facecolor='white')
axes0 = figure.add_subplot(111)
# Read Postprocessor Data
data = mooseutils.PostprocessorReader('histogram_vector_postprocessor_out_histo_0001.csv')
# Grab upper and lower bin bounds
lower = data('value_lower')
upper = data('value_upper')
# Compute the midpoint and width of each bin
mid = (lower + upper) / 2.0
width = upper - lower
# Grab the data to be plotted
y = data('value')
# Plot everything
axes0.bar(mid, y, width=width)
# Show the plot and save it
plt.show()
figure.savefig("output.pdf")
Input Parameters
- contains_complete_historyFalseSet this flag to indicate that the values in all vectors declared by this VPP represent a time history (e.g. with each invocation, new values are added and old values are never removed). This changes the output so that only a single file is output and updated with each invocation
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Set this flag to indicate that the values in all vectors declared by this VPP represent a time history (e.g. with each invocation, new values are added and old values are never removed). This changes the output so that only a single file is output and updated with each invocation
- execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Unit:(no unit assumed)
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
- parallel_typeREPLICATEDSet how the data is represented within the VectorPostprocessor (VPP); 'distributed' indicates that data within the VPP is distributed and no auto communication is performed, this setting will result in parallel output within the CSV output; 'replicated' indicates that the data within the VPP is correct on processor 0, the data will automatically be broadcast to all processors unless the '_auto_broadcast' param is set to false within the validParams function.
Default:REPLICATED
C++ Type:MooseEnum
Unit:(no unit assumed)
Controllable:No
Description:Set how the data is represented within the VectorPostprocessor (VPP); 'distributed' indicates that data within the VPP is distributed and no auto communication is performed, this setting will result in parallel output within the CSV output; 'replicated' indicates that the data within the VPP is correct on processor 0, the data will automatically be broadcast to all processors unless the '_auto_broadcast' param is set to false within the validParams function.
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
- use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Unit:(no unit assumed)
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
- enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Unit:(no unit assumed)
Controllable:Yes
Description:Set the enabled status of the MooseObject.
- execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Unit:(no unit assumed)
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
- force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
- force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
- force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
- outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Unit:(no unit assumed)
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
- use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Unit:(no unit assumed)
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.